Plancks quantum-driven integer quantum Hall effect in chaos


Abstract in English

The integer quantum Hall effect (IQHE) and chaos are commonly conceived as being unrelated. Contrary to common wisdoms, we find in a canonical chaotic system, the kicked spin-$1/2$ rotor, a Plancks quantum($h_e$)-driven phenomenon bearing a firm analogy to IQHE but of chaos origin. Specifically, the rotors energy growth is unbounded (metallic phase) for a discrete set of critical $h_e$-values, but otherwise bounded (insulating phase). The latter phase is topological in nature and characterized by a quantum number (quantized Hall conductance). The number jumps by unity whenever $h_e$ decreases passing through each critical value. Our findings, within the reach of cold-atom experiments, indicate that rich topological quantum phenomena may emerge from chaos.

Download