No Arabic abstract
The integer quantum Hall effect (IQHE) and chaos are commonly conceived as being unrelated. Contrary to common wisdoms, we find in a canonical chaotic system, the kicked spin-$1/2$ rotor, a Plancks quantum($h_e$)-driven phenomenon bearing a firm analogy to IQHE but of chaos origin. Specifically, the rotors energy growth is unbounded (metallic phase) for a discrete set of critical $h_e$-values, but otherwise bounded (insulating phase). The latter phase is topological in nature and characterized by a quantum number (quantized Hall conductance). The number jumps by unity whenever $h_e$ decreases passing through each critical value. Our findings, within the reach of cold-atom experiments, indicate that rich topological quantum phenomena may emerge from chaos.
A highly non-thermal electron distribution is generated when quantum Hall edge states originating from sources at different potentials meet at a quantum point contact. The relaxation of this distribution to a stationary form as a function of distance downstream from the contact has been observed in recent experiments [Phys. Rev. Lett. 105, 056803 (2010)]. Here we present an exact treatment of a minimal model for the system at filling factor u=2, with results that account well for the observations.
Recent theoretical work on time-periodically kicked Hofstadter model found robust counter-propagating edge modes. It remains unclear how ubiquitously such anomalous modes can appear, and what dictates their robustness against disorder. Here we shed further light on the nature of these modes by analyzing a simple type of periodic driving where the hopping along one spatial direction is modulated sinusoidally with time while the hopping along the other spatial direction is kept constant. We obtain the phase diagram for the quasienergy spectrum at flux 1/3 as the driving frequency $omega$ and the hopping anisotropy are varied. A series of topologically distinct phases with counter-propagating edge modes appear due to the harmonic driving, similar to the case of a periodically kicked system studied earlier. We analyze the time dependence of the pair of Floquet edge states localized at the same edge, and compare their Fourier components in the frequency domain. In the limit of small modulation, one of the Floquet edge mode within the pair can be viewed as the edge mode originally living in the other energy gap shifted in quasienergy by $hbar omega$, i.e., by absorption or emission of a photon of frequency $omega$. Our result suggests that counter-propagating Floquet edge modes are generic features of periodically driven integer quantum Hall systems, and not tied to any particular driving protocol. It also suggests that the Floquet edge modes would remain robust to any static perturbations that do not destroy the chiral edge modes of static quantum Hall states.
We study the quantum entanglement structure of integer quantum Hall states via the reduced density matrix of spatial subregions. In particular, we examine the eigenstates, spectrum and entanglement entropy (EE) of the density matrix for various ground and excited states, with or without mass anisotropy. We focus on an important class of regions that contain sharp corners or cusps, leading to a geometric angle-dependent contribution to the EE. We unravel surprising relations by comparing this corner term at different fillings. We further find that the corner term, when properly normalized, has nearly the same angle dependence as numerous conformal field theories (CFTs) in two spatial dimensions, which hints at a broader structure. In fact, the Hall corner term is found to obey bounds that were previously obtained for CFTs. In addition, the low-lying entanglement spectrum and the corresponding eigenfunctions reveal excitations localized near corners. Finally, we present an outlook for fractional quantum Hall states.
We theoretically study the quantum Hall effect (QHE) in graphene with an ac electric field. Based on the tight-binding model, the structure of the half-integer Hall plateaus at $sigma_{xy} = pm(n + 1/2)4e^2/h$ ($n$ is an integer) gets qualitatively changed with the addition of new integer Hall plateaus at $sigma_{xy} = pm n(4e^2/h)$ starting from the edges of the band center regime towards the band center with an increasing ac field. Beyond a critical field strength, a Hall plateau with $sigma_{xy} = 0$ can be realized at the band center, hence restoring fully a conventional integer QHE with particle-hole symmetry. Within a low-energy Hamiltonian for Dirac cones merging, we show a very good agreement with the tight-binding calculations for the Hall plateau transitions. We also obtain the band structure for driven graphene ribbons to provide a further understanding on the appearance of the new Hall plateaus, showing a trivial insulator behavior for the $sigma_{xy} = 0$ state. In the presence of disorder, we numerically study the disorder-induced destruction of the quantum Hall states in a finite driven sample and find that qualitative features known in the undriven disordered case are maintained.
Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.