Do you want to publish a course? Click here

Interplay between Mn-acceptor state and Dirac surface states in Mn-doped Bi$_2$Se$_3$ topological insulator

208   0   0.0 ( 0 )
 Added by Reza Mahani
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the properties of a single substitutional Mn impurity and its associated acceptor state on the (111) surface of Bi$_2$Se$_3$ topological insulator. Combining ab initio calculations with microscopic tight-binding modeling, we identify the effects of inversion-symmetry and time-reversal-symmetry breaking on the electronic states in the vicinity of the Dirac point. In agreement with experiments, we find evidence that the Mn ion is in the ${+2}$-valence state and introduces an acceptor in the bulk band gap. The Mn-acceptor has predominantly $p$-character, and is localized mainly around the Mn impurity and its nearest-neighbor Se atoms. Its electronic structure and spin-polarization are determined by the hybridization between the Mn $d$-levels and the $p$-levels of surrounding Se atoms, which is strongly affected by electronic correlations at the Mn site. The opening of the gap at the Dirac point depends crucially on the quasi-resonant coupling and the strong real-space overlap between the spin-chiral surface states and the mid-gap spin-polarized Mn-acceptor states.



rate research

Read More

Doping Bi$_2$Se$_3$ by magnetic ions represents an interesting problem since it may break the time reversal symmetry needed to maintain the topological insulator character. Mn dopants in Bi$_2$Se$_3$ represent one of the most studied examples here. However, there is a lot of open questions regarding their magnetic ordering. In the experimental literature different Curie temperatures or no ferromagnetic order at all are reported for comparable Mn concentrations. This suggests that magnetic ordering phenomena are complex and highly susceptible to different growth parameters, which are known to affect material defect concentrations. So far theory focused on Mn dopants in one possible position, and neglected relaxation effects as well as native defects. We have used ab initio methods to calculate the Bi$_2$Se$_3$ electronic structure influenced by magnetic Mn dopants, and exchange interactions between them. We have considered two possible Mn positions, the substitutional and interstitial one, and also native defects. We have found a sizable relaxation of atoms around Mn, which affects significantly magnetic interactions. Surprisingly, very strong interactions correspond to a specific position of Mn atoms separated by van der Waals gap. Based on the calculated data we performed spin dynamics simulations to examine systematically the resulting magnetic order for various defect contents. We have found under which conditions the experimentally measured Curie temperatures ${T_{rm{C}}}$ can be reproduced, noticing that interstitial Mn atoms appear to be important here. Our theory predicts the change of ${T_{rm{C}}}$ with a shift of Fermi level, which opens the way to tune the system magnetic properties by selective doping.
Magnetic susceptibility $chi$ of Bi$_{2-x}$Mn$_{x}$Se$_3$ ($x = 0.01-0.2$) was measured in the temperature range $4.2-300$ K. For all the samples, a Curie-Weiss behaviour of $chi(T)$ was revealed with effective magnetic moments of Mn ions corresponding to the spin value S=5/2, which couple antiferromagnetically with the paramagnetic Curie temperature $Thetasim -50$ K. In addition, for the samples of nominal composition $x$ = 0.1 and 0.2 the effect of a hydrostatic pressure $P$ up to 2 kbar on $chi$ has been measured at fixed temperatures 78 and 300 K that allowed to estimate the pressure derivative of $Theta$ to be d$Theta$/d$Psim-0.8$ K/kbar. Based on the observed behaviour of $Theta$ with varied Mn concentration and pressure, a possible mechanism of interaction between localized Mn moments is discussed.
We have utilized time-domain magneto-terahertz spectroscopy to investigate the low frequency optical response of topological insulator Cu$_{0.02}$Bi$_2$Se$_3$ and Bi$_2$Se$_3$ films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu$_{0.02}$Bi$_2$Se$_3$ induces a true bulk insulator with only a textit{single} type of conduction with total sheet carrier density $sim4.9times10^{12}/$cm$^{2}$ and mobility as high as 4000 cm$^{2}/$V$cdot$s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on top and bottom of the film with a chemical potential $sim$145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero field Drude conductance. In contrast, in normal Bi$_2$Se$_3$ films two conduction channels were observed and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk/2DEG states. Our high-resolution Faraday rotation spectroscopy on Cu$_{0.02}$Bi$_2$Se$_3$ paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push chemical potential in the lowest Landau Level.
Achieving true bulk insulating behavior in Bi$_2$Se$_3$, the archetypal topological insulator with a simplistic one-band electronic structure and sizable band gap, has been prohibited by a well-known self-doping effect caused by selenium vacancies, whose extra electrons shift the chemical potential into the bulk conduction band. We report a new synthesis method for achieving stoichiometric Bi$_2$Se$_3$ crystals that exhibit nonmetallic behavior in electrical transport down to low temperatures. Hall effect measurements indicate the presence of both electron- and hole-like carriers, with the latter identified with surface state conduction and the achievement of ambipolar transport in bulk Bi$_2$Se$_3$ crystals without gating techniques. With carrier mobilities surpassing the highest values yet reported for topological surface states in this material, the achievement of ambipolar transport via upward band bending is found to provide a key method to advancing the potential of this material for future study and applications.
205 - A. Kogar , S. Vig , A. Thaler 2015
We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the spin plasmon predicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface, $chi (textbf{q},omega)$, at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا