We show that the driving force behind the regularizing effect of Laplacian smoothing on surface elements is the popular mean ratio quality measure. We use these insights to provide natural generalizations to polygons and polyhedra. The corresponding functions measuring the quality of meshes are easily seen to be convex and can be used for global optimization-based untangling and smoothing. Using a simple backtracking line-search we compare several smoothing methods with respect to the resulting mesh quality. We also discuss their effectiveness in combination with topology modification.