Do you want to publish a course? Click here

Mean first-passage time for maximal-entropy random walks in complex networks

124   0   0.0 ( 0 )
 Added by Zhongzhi Zhang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform an in-depth study for mean first-passage time (MFPT)---a primary quantity for random walks with numerous applications---of maximal-entropy random walks (MERW) performed in complex networks. For MERW in a general network, we derive an explicit expression of MFPT in terms of the eigenvalues and eigenvectors of the adjacency matrix associated with the network. For MERW in uncorrelated networks, we also provide a theoretical formula of MFPT at the mean-field level, based on which we further evaluate the dominant scalings of MFPT to different targets for MERW in uncorrelated scale-free networks, and compare the results with those corresponding to traditional unbiased random walks (TURW). We show that the MFPT to a hub node is much lower for MERW than for TURW. However, when the destination is a node with the least degree or a uniformly chosen node, the MFPT is higher for MERW than for TURW. Since MFPT to a uniformly chosen node measures real efficiency of search in networks, our work provides insight into general searching process in complex networks.



rate research

Read More

We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target, and implies a minimal scaling of the GMFPT with the network size. We show that this minimal scaling, which can be arbitrarily slow for a proper choice of highly connected target, is realized under the simple condition that the random walk is transient at the target site, and independently of the small-world, scale free or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a representative property of the network, since the target averaged GMFPT satisfies much more restrictive bounds, which forbid any sublinear scaling with the network size.
We obtain an exact formula for the first-passage time probability distribution for random walks on complex networks using inverse Laplace transform. We write the formula as the summation of finitely many terms with different frequencies corresponding to the poles of Laplace transformed function and separate the short-term and long-term behavior of the first-passage process. We give a formula of the decay rate $beta$, which is inversely proportional to the characteristic relaxation time $tau$ of the target node. This exact formula for the first-passage probability between two nodes at a given time can be approximately solved in the mean field approximation by estimation of the characteristic relaxation time $tau$. Our theoretical results compare well with numerical simulation on artificial as well as real networks.
We present an analytical method for computing the mean cover time of a random walk process on arbitrary, complex networks. The cover time is defined as the time a random walker requires to visit every node in the network at least once. This quantity is particularly important for random search processes and target localization in network topologies. Based on the global mean first passage time of target nodes we derive an estimate for the cumulative distribution function of the cover time based on first passage time statistics. We show that our result can be applied to various model networks, including ErdH{o}s-Renyi and Barabasi-Albert networks, as well as various real-world networks. Our results reveal an intimate link between first passage and cover time statistics in networks in which structurally induced temporal correlations decay quickly and offer a computationally efficient way for estimating cover times in network related applications.
We study the extremal properties of a stochastic process $x_t$ defined by a Langevin equation $dot{x}_t=sqrt{2 D_0 V(B_t)},xi_t$, where $xi_t$ is a Gaussian white noise with zero mean, $D_0$ is a constant scale factor, and $V(B_t)$ is a stochastic diffusivity (noise strength), which itself is a functional of independent Brownian motion $B_t$. We derive exact, compact expressions for the probability density functions (PDFs) of the first passage time (FPT) $t$ from a fixed location $x_0$ to the origin for three different realisations of the stochastic diffusivity: a cut-off case $V(B_t) =Theta(B_t)$ (Model I), where $Theta(x)$ is the Heaviside theta function; a Geometric Brownian Motion $V(B_t)=exp(B_t)$ (Model II); and a case with $V(B_t)=B_t^2$ (Model III). We realise that, rather surprisingly, the FPT PDF has exactly the Levy-Smirnov form (specific for standard Brownian motion) for Model II, which concurrently exhibits a strongly anomalous diffusion. For Models I and III either the left or right tails (or both) have a different functional dependence on time as compared to the Levy-Smirnov density. In all cases, the PDFs are broad such that already the first moment does not exist. Similar results are obtained in three dimensions for the FPT PDF to an absorbing spherical target.
We design a method to optimize the global mean first-passage time (GMFPT) of multiple random walkers searching in complex networks for a general target, without specifying the property of the target node. According to the Laplace transformed formula of the GMFPT, we can equivalently minimize the overlap between the probability distribution of sites visited by the random walkers. We employ a mutation only genetic algorithm to solve this optimization problem using a population of walkers with different starting positions and a corresponding mutation matrix to modify them. The numerical experiments on two kinds of random networks (WS and BA) show satisfactory results in selecting the origins for the walkers to achieve minimum overlap. Our method thus provides guidance for setting up the search process by multiple random walkers on complex networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا