Buffered spectrally-peaked proton beams in the relativistic-transparency regime


Abstract in English

Spectrally-peaked proton beams ($E_{p}approx 8$ MeV, $Delta Eapprox 4$ MeV) have been observed from the interaction of an intense laser ($> 10^{19 }$ Wcm$^{-2}$) with ultrathin CH foils, as measured by spectrally-resolved full beam profiles. These beams are reproducibly generated for foil thicknesses (5-100 nm), and exhibit narrowing divergence with decreasing target thickness down to $approx 8^circ$ for 5 nm. Simulations demonstrate that the narrow energy spread feature is a result of buffered acceleration of protons. Due to their higher charge-to-mass ratio, the protons outrun a carbon plasma driven in the relativistic transparency regime.

Download