Using transport measurements, we investigate multicomponent quantum Hall (QH) ferromagnetism in dual-gated rhombohedral trilayer graphene (r-TLG), in which the real spin, orbital pseudospin and layer pseudospins of the lowest Landau level form spontaneous ordering. We observe intermediate quantum Hall plateaus, indicating a complete lifting of the degeneracy of the zeroth Landau level (LL) in the hole-doped regime. In charge neutral r-TLG, the orbital degeneracy is broken first, and the layer degeneracy is broken last and only the in presence of an interlayer potential U. In the phase space of U and filling factor, we observe an intriguing hexagon pattern, which is accounted for by a model based on crossings between symmetry-broken LLs.