Do you want to publish a course? Click here

Bond-Order and the Role of Ligand States in Stripe-Modulated IrTe2

164   0   0.0 ( 0 )
 Added by Kou Takubo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The coupled electronic-structural modulations of the ligand states in IrTe$_2$ have been studied by x-ray absorption spectroscopy (XAS) and resonant elastic x-ray scattering (REXS). Distinctive pre-edge structures are observed at the Te-$M_{4,5}$ (3$d$ $rightarrow$ 5$p$) absorption edge, indicating the presence of a Te 5$p$-Ir 5$d$ covalent state near the Fermi level. An enhancement of the REXS signal near the Te 3$d$ $rightarrow$ 5$p$ resonance at the $Q!=!(1/5,0,-1/5)$ superlattice reflection is observed below the structural transition temperature $T_ssim$ 280 K. The analysis of the energy-dependent REXS lineshape reveals the key role played by the spatial modulation of the covalent Te 5$p$-Ir 5$d$ bond-density in driving the stripe-like order in IrTe$_2$, and uncovers its coupling with the charge and/or orbital order at the Ir sites. The similarity between these findings and the charge-ordering phenomenology observed in the high-T$_c$ superconducting cuprates suggests that the iridates may harbor similar exotic phases.



rate research

Read More

Superconductivity in the vicinity of a competing electronic order often manifests itself with a superconducting dome, centred at a presumed quantum critical point in the phase diagram. This common feature, found in many unconventional superconductors, has supported a prevalent scenario that fluctuations or partial melting of a parent order are essential for inducing or enhancing superconductivity. Here we present a contrary example, found in IrTe2 nanoflakes of which the superconducting dome is identified well inside the parent stripe charge ordering phase in the thickness-dependent phase diagram. The coexisting stripe charge order in IrTe2 nanoflakes significantly increases the out-of-plane coherence length and the coupling strength of superconductivity, in contrast to the doped bulk IrTe2. These findings clarify that the inherent instabilities of the parent stripe phaseare sufficient to induce superconductivity in IrTe2 without its complete or partial melting. Our study highlights the thickness control as an effective means to unveil intrinsic phase diagrams of correlated vdW materials.
Layered 5d transition metal dichalcogenide (TMD) IrTe2 is distinguished from the traditional TMDs (such as NbSe2) by the existence of multiple CDW-like stripe phases and superconductivity at low temperatures. Despite of intensive studies, there is still no consensus on the physical origin of the stripe phases or even the ground state modulation for this 5d material. Here, we present atomic-scale evidence from scanning tunneling microscopy and spectroscopy (STM/STS), that the ground state of IrTe2 is a q=1/6 stripe phase, identical to that of the Se-doped compound. Furthermore, our data suggest that the multiple transitions and stripe phases are driven by the intralayer Ir-Ir dimerization that competes against the interlayer Te-Te bonding. The competition results in a unified phase diagram with a series of hierarchical modulated stripe phases, strikingly similar to the renowned devils staircase phenomena.
The charge and spin dynamics of the structurally simplest iron-based superconductor, FeSe, may hold the key to understanding the physics of high temperature superconductors in general. Unlike the iron pnictides, FeSe lacks long range magnetic order in spite of a similar structural transition around 90,K. Here, we report results of Raman scattering experiments as a function of temperature and polarization and simulations based on exact diagonalization of a frustrated spin model. Both experiment and theory find a persistent low energy peak close to 500cm$^{-1}$ in $B_{1g}$ symmetry, which softens slightly around 100,K, that we assign to spin excitations. By comparing with results from neutron scattering, this study provides evidence for nearly frustrated stripe order in FeSe.
Unidirectional (stripe) charge-density-wave order has now been established as a ubiquitous feature in the phase diagram of the cuprate high temperature (HT) superconductors, where it generally competes with superconductivity (SC). None-the-less, on theoretical grounds it has been conjectured that stripe order (or other forms of optimal inhomogeneities) may play an essential positive role in the mechanism of HTSC. Here we report density matrix renormalization group studies of the Hubbard model on long 4 and 6 leg cylinders where the hopping matrix elements transverse to the long direction are periodically modulated - mimicing the effect of putative period-2 stripe order. We find even modest amplitude modulations can enhance the long-distance SC correlations by many orders of magnitude, and drive the system into a phase with a substantial spin gap and SC quasi-long-range-order with a Luttinger exponent, $K_{sc} sim 1$.
A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large portion of the cuprate phase diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا