Growing Networks with Super-Joiners


Abstract in English

We study the Krapivsky-Redner (KR) network growth model but where new nodes can connect to any number of existing nodes, $m$, picked from a power-law distribution $p(m)sim m^{-alpha}$. Each of the $m$ new connections is still carried out as in the KR model with probability redirection $r$ (corresponding to degree exponent $gamma_{rm KR}=1+1/r$, in the original KR model). The possibility to connect to any number of nodes resembles a more realistic type of growth in several settings, such as social networks, routers networks, and networks of citations. Here we focus on the in-, out-, and total-degree distributions and on the potential tension between the degree exponent $alpha$, characterizing new connections (outgoing links), and the degree exponent $gamma_{rm KR}(r)$ dictated by the redirection mechanism.

Download