Electromagnetic (EM) follow-up of gravitational wave (GW) candidates is important for verifying their astrophysical nature and studying their physical properties. While the next generation of GW detectors will have improved sensitivities to make the first detection of GW events, their ability to localize these events will remain poor during the early days of their operation. This makes EM follow-up challenging for most telescopes. Many new low frequency radio instruments have come online recently or will come online over the next few years, and their wide fields of view allow them to cover large areas of the sky in a short amount of time. This paper studies comprehensively the detectability of radio afterglows from compact binary coalescence (CBC), a predicted GW source and the most promising progenitor of short gamma-ray bursts. We explore the properties of simulated afterglow lightcurves from the forward shock for a range of source and observer parameters, then we use these lightcurves to estimate the expected rates of detection for different radio instruments and survey methods. Detecting radio afterglows and constraining their properties and rates are feasible with the current and upcoming widefield radio instruments. As a result, widefield radio instruments will play an important role in the EM follow-up of GW events.