Do you want to publish a course? Click here

Ring statistics of silica bilayers

304   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent synthesis and characterization of bilayers of vitreous silica has produced valuable new information on ring sizes and distributions. In this paper, we compare the ring statistics of experimental samples with computer generated samples. The average ring size is fixed at six by topology, but the width, skewness and other moments of the distribution of ring edges are characteristics of particular samples. We examine the Aboav-Weaire law that quantifies the propensity of smaller rings to be adjacent to larger rings, and find similar results for available experimental samples which however differ somewhat from computer-generated bilayers currently. We introduce a new law for the areas of rings of various sizes.



rate research

Read More

We computer model a free-standing vitreous silica bilayer which has recently been synthesized and characterized experimentally in landmark work. Here we model the bilayer using a computer assembly procedure that starts from a single layer of amorphous graphene, generated using a bond switching algorithm from an initially crystalline graphene structure. Next each bond is decorated with an oxygen atom and the carbon atoms are relabeled as silicon. This monolayer can be now thought of as a two dimensional network of corner sharing triangles. Next each triangle is made into a tetrahedron, by raising the silicon atom above each triangle and adding an additional singly coordinated oxygen atom at the apex. The final step is to mirror reflect this layer to form a second layer and then attach the two layers together to form the bilayer. We show that this vitreous silica bilayer has the additional macroscopic degrees of freedom to easily form a network of identical corner sharing tetrahedra if there is a symmetry plane through the center of the bilayer going through the layer of oxygen ions that join the upper and lower layers. This has the consequence that the upper rings lie exactly above the lower rings, which are tilted in general. The assumption of a network of perfect corner sharing tetrahedra leads to a range of possible densities that we have previously characterized in three dimensional zeolites as a flexibility window. Finally, using a realistic potential, we have relaxed the bilayer to determine the density, and other structural characteristics such as the Si-Si pair distribution functions and the Si-O-Si bond angle distribution, which are compared to the experimental results obtained by direct imaging.
Silica is known as the archetypal strong liquid, exhibiting an Arrhenius viscosity curve with a high glass transition temperature and constant activation energy. However, given the ideally isostatic nature of the silica network, the presence of even a small concentration of defects can lead to a significant decrease in both the glass transition temperature and activation energy for viscous flow. To understand the impact of trace level dopants on the viscosity of silica, we measure the viscosity-temperature curves for seven silica glass samples having different impurities, including four natural and three synthetic samples. Depending on the type of dopant, the glass transition temperature can vary by nearly 300 K. A common crossover is found for all viscosity curves around ~2200-2500 K, which we attribute to a change of the transport mechanism in the melt from being dominated by intrinsic defects at high temperature to dopant-induced defects at low temperatures.
141 - Hao Gao , Cong Liu , Jiuyang Shi 2021
Silica, water and hydrogen are known to be the major components of celestial bodies, and have significant influence on the formation and evolution of giant planets, such as Uranus and Neptune. Thus, it is of fundamental importance to investigate their states and possible reactions under the planetary conditions. Here, using advanced crystal structure searches and first-principles calculations in the Si-O-H system, we find that a silica-water compound (SiO2)2(H2O) and a silica-hydrogen compound SiO2H2 can exist under high pressures above 450 and 650 GPa, respectively. Further simulations reveal that, at high pressure and high temperature conditions corresponding to the interiors of Uranus and Neptune, these compounds exhibit superionic behavior, in which protons diffuse freely like liquid while the silicon and oxygen framework is fixed as solid. Therefore, these superionic silica-water and silica-hydrogen compounds could be regarded as important components of the deep mantle or core of giants, which also provides an alternative origin for their anomalous magnetic fields. These unexpected physical and chemical properties of the most common natural materials at high pressure offer key clues to understand some abstruse issues including demixing and erosion of the core in giant planets, and shed light on building reliable models for solar giants and exoplanets.
Concurrent molecular dynamics simulations and ab initio calculations show that densification of silica under pressure follows a ubiquitous two-stage mechanism. First, anions form a close-packed sub-lattice, governed by the strong repulsion between them. Next, cations redistribute onto the interstices. In cristobalite silica, the first stage is manifest by the formation of a metastable phase, which was observed experimentally a decade ago, but never indexed due to ambiguous diffraction patterns. Our simulations conclusively reveal its structure and its role in the densification of silica.
The effect of silica-promotion on the reduction of iron oxides in hydrogen was investigated using in situ X-ray diffraction and aberration-corrected transmission electron microscopy to understand the mechanism of reduction and the identity of the iron(II) silicate phase that has historically been designated as the cause of the iron-silica interaction in such materials. In the absence of a silica promoter the reduction of hematite to {alpha}-Fe proceeds via magnetite. Silica promoted amorphous iron oxide is reduced to {alpha}-Fe via stable magnetite and wustite phases. During reduction of silica-promoted iron oxide, Fe0 diffuses out of the amorphous silica-promoted iron oxide matrix upon reduction from Fe2+ and coexists with an amorphous Fe-O-Si matrix. Certain portions of wustite remain difficult to reduce to {alpha}-Fe owing to the formation of a protective silica-containing layer covering the remaining iron oxide regions. Given sufficient energy, this amorphous Fe-O-Si material forms ordered, crystalline fayalite.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا