This is a survey of methods of proving or disproving the Rapid Decay property in groups. We present a centroid property of group actions on metric spaces. That property is a generalized (and corrected) version of the property (**)-relative hyperbolicity from our paper with Cornelia Drutu, math/0405500, and implies the Rapid Decay (RD) property. We show that several properties which are known to imply RD also imply the centroid property. Thus uniform lattices in many semi-simple Lie groups, Artin groups of large type and the mapping class groups have the centroid property. We also present a simple non-amenability-like property that follows from RD, and give an easy example of a group without RD and without any amenable subgroup with superpolynomial growth, some misprints in other sections are corrected.