Do you want to publish a course? Click here

Emergent Majorana Fermions and their Restricted Clifford Algebra

126   0   0.0 ( 0 )
 Added by Charles Suggs
 Publication date 2014
  fields Physics
and research's language is English
 Authors R. Jackiw




Ask ChatGPT about the research

Dedicated to Ludwig Faddeev on his 80th birthday. Ludwig exemplifies perfectly a mathematical physicist: significant contribution to mathematics (algebraic properties of integrable systems) and physics (quantum field theory). In this note I present an exercise which bridges mathematics (restricted Clifford algebra) to physics (Majorana fermions).



rate research

Read More

We use Dirac matrix representations of the Clifford algebra to build fracton models on the lattice and their effective Chern-Simons-like theory. As an example we build lattice fractons in odd $D$ spatial dimensions and their $(D+1)$ effective theory. The model possesses an anti-symmetric $K$ matrix resembling that of hierarchical quantum Hall states. The gauge charges are conserved in sub-dimensional manifolds which ensures the fractonic behavior. The construction extends to any lattice fracton model built from commuting projectors and with tensor products of spin-$1/2$ degrees of freedom at the sites.
123 - C. Chamon , R. Jackiw , Y. Nishida 2010
A Dirac-type matrix equation governs surface excitations in a topological insulator in contact with an s-wave superconductor. The order parameter can be homogenous or vortex valued. In the homogenous case a winding number can be defined whose non-vanishing value signals topological effects. A vortex leads to a static, isolated, zero energy solution. Its mode function is real, and has been called Majorana. Here we demonstrate that the reality/Majorana feature is not confined to the zero energy mode, but characterizes the full quantum field. In a four-component description a change of basis for the relevant matrices renders the Hamiltonian imaginary and the full, space-time dependent field is real, as is the case for the relativistic Majorana equation in the Majorana matrix representation. More broadly, we show that the Majorana quantization procedure is generic to superconductors, with or without the Dirac structure, and follows from the constraints of fermionic statistics on the symmetries of Bogoliubov-de Gennes Hamiltonians. The Hamiltonian can always be brought to an imaginary form, leading to equations of motion that are real with quantized real field solutions. Also we examine the Fock space realization of the zero mode algebra for the Dirac-type systems. We show that a two-dimensional representation is natural, in which fermion parity is preserved.
169 - R. Jackiw 2011
We describe the occurrence and physical role of zero-energy modes in the Dirac equation with a topologically non-trivial background.
Real Clifford algebras for arbitrary number of space and time dimensions as well as their representations in terms of spinors are reviewed and discussed. The Clifford algebras are classified in terms of isomorphic matrix algebras of real, complex or quaternionic type. Spinors are defined as elements of minimal or quasi-minimal left ideals within the Clifford algebra and as representations of the pin and spin groups. Two types of Dirac adjoint spinors are introduced carefully. The relation between mathematical structures and applications to describe relativistic fermions is emphasized throughout.
234 - R. Jackiw 2014
To mark the 111th birthday of Eugene Wigner, we review topological excitations in diverse dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا