No Arabic abstract
Frustrated systems exhibit remarkable properties due to the high degeneracy of their ground states. Stabilised by competing interactions, a rich diversity of typically nanometre-sized phase structures appear in polymer and colloidal systems, while the surface of ice pre-melts due to geometrically frustrated interactions. Atomic spin systems where magnetic interactions are frustrated by lattice geometry provide a fruitful source of emergent phenomena, such as fractionalised excitations analogous to magnetic monopoles. The degeneracy inherent in frustrated systems may prevail all the way down to absolute zero temperature, or it may be lifted by small perturbations or entropic effects. In the geometrically frustrated Ising--like magnet Ca3Co2O6, we follow the temporal and spatial evolution of nanoscale magnetic fluctuations firmly embedded inside the spin--density--wave magnetic structure. These fluctuations are a signature of a competing ferrimagnetic phase with an incommensurability that is different from, but determined by the host. As the temperature is lowered, the fluctuations slow down into a super-paramagnetic regime of stable spatiotemporal nano-structures.
Frustrated systems are ubiquitous and interesting because their behavior is difficult to predict. Magnetism offers extreme examples in the form of spin lattices where all interactions between spins cannot be simultaneously satisfied. Such geometrical frustration leads to macroscopic degeneracies, and offers the possibility of qualitatively new states of matter whose nature has yet to be fully understood. Here we have discovered how novel composite spin degrees of freedom can emerge from frustrated interactions in the cubic spinel ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops whose directors, defined as the unique direction along which the spins are aligned parallel or antiparallel, govern all low temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering. While the data bears no resemblance to the atomic form factor for chromium, they are perfectly consistent with the form factor for hexagonal spin loop directors. The hexagon directors are to a first approximation decoupled from each other and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.
The relationship between magnetic order and ferroelectric properties has been investigated for MnWO$_4$ with long-wavelength magnetic structure. Spontaneous electric polarization is observed in an elliptical spiral spin phase. The magnetic-field dependence of electric polarization indicates that the noncollinear spin configuration plays a key role for the appearance of ferroelectric phase. An electric polarization flop from the b direction to the a direction has been observed when a magnetic field above 10T is applied along the b axis. This result demonstrates that an electric polarization flop can be induced by a magnetic field in a simple system without rare-earth f-moments.
Gd3Ga5O12, (GGG), has an extraordinary magnetic phase diagram, where no long range order is found down to 25 mK despite Theta_CW approx 2 K. However, long range order is induced by an applied field of around 1 T. Motivated by recent theoretical developments and the experimental results for a closely related hyperkagome system, we have performed neutron diffraction measurements on a single crystal sample of GGG in an applied magnetic field. The measurements reveal that the H-T phase diagram of GGG is much more complicated than previously assumed. The application of an external field at low T results in an intensity change for most of the magnetic peaks which can be divided into three distinct sets: ferromagnetic, commensurate antiferromagnetic, and incommensurate antiferromagnetic. The ferromagnetic peaks (e.g. (112), (440) and (220)) have intensities that increase with the field and saturate at high field. The antiferromagnetic reflections have intensities that grow in low fields, reach a maximum at an intermediate field (apart from the (002) peak which shows two local maxima) and then decrease and disappear above 2 T. These AFM peaks appear, disappear and reach maxima in different fields. We conclude that the competition between magnetic interactions and alternative ground states prevents GGG from ordering in zero field. It is, however, on the verge of ordering and an applied magnetic field can be used to crystallise ordered components. The range of ferromagnetic and antiferromagnetic propagation vectors found reflects the complex frustration in GGG.
The magnetic phases of a triangular-lattice antiferromagnet, CuCrO$_2$, were investigated in magnetic fields along to the $c$ axis, $H$ // [001], up to 120 T. Faraday rotation and magneto-absorption spectroscopy were used to unveil the rich physics of magnetic phases. An up-up-down (UUD) magnetic structure phase was observed around 90--105 T at temperatures around 10 K. Additional distinct anomalies adjacent to the UUD phase were uncovered and the Y-shaped and the V-shaped phases are proposed to be viable candidates. These ordered phases are emerged as a result of the interplay of geometrical spin frustration, single ion anisotropy and thermal fluctuations in an environment of extremely high magnetic fields.
We report the direct observation of a magnetic-feld induced long-wavelength spin spiral modulation in the chiral compound Ba3TaFe3Si2O14. This new spin texture emerges out of a chiral helical ground state, and is hallmarked by the onset of a unique contribution to the bulk electric polarization, the sign of which depends on the crystal chirality. The periodicity of the feld induced modulation, several hundreds of nm depending on the field value, is comparable to the length scales of mesoscopic topological defects such as skyrmions, merons and solitons. The phase transition and observed threshold behavior are consistent with a phenomenology based on the allowed Lifshitz invariants for the chiral symmetry of langasite, which intriguingly contain all the ingredients for the possible realization of topologically stable antiferromagnetic skyrmions.