Do you want to publish a course? Click here

Is the Ultra-High Energy Cosmic-Ray Excess Observed by the Telescope Array Correlated with IceCube Neutrinos?

119   0   0.0 ( 0 )
 Added by Ke Fang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Telescope Array (TA) has observed a statistically significant excess in cosmic-rays with energies above 57 EeV in a region of approximately 1150 square degrees centered on coordinates (R.A. = 146.7, Dec. = 43.2). We note that the location of this excess correlates with two of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2$sigma$ level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible source classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source.



rate research

Read More

315 - T.Abu-Zayyad , R.Aida , M.Allen 2013
We measure the spectrum of cosmic rays with energies greater than $10^{18.2}$ eV with the Fluorescence Detectors (FDs) and the Surface Detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27 2008 to September 7 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.
We present an upper limit on the flux of ultra-high-energy down-going neutrinos for $E > 10^{18} mbox{eV}$ derived with the nine years of data collected by the Telescope Array surface detector (05-11-2008 -- 05-10-2017). The method is based on the multivariate analysis technique, so-called Boosted Decision Trees (BDT). Proton-neutrino classifier is built upon 16 observables related to both the properties of the shower front and the lateral distribution function.
304 - T. Abu-Zayyad , R. Aida , M. Allen 2013
We search for correlations between positions of extragalactic objects and arrival directions of Ultra-High Energy Cosmic Rays (UHECRs) with primary energy $E ge 40$ EeV as observed by the surface detector array of the Telescope Array (TA) experiment during the first 40 months of operation. We examined several public astronomical object catalogs, including the Veron-Cetty and Veron catalog of active galactic nuclei. We counted the number of TA events correlated with objects in each catalog as a function of three parameters: the maximum angular separation between a TA event and an object, the minimum energy of the events, and the maximum redshift of the objects. We determine combinations of these parameters which maximize the correlations, and calculate the chance probabilities of having the same levels of correlations from an isotropic distribution of UHECR arrival directions. No statistically significant correlations are found when penalties for scanning over the above parameters and for searching in several catalogs are taken into account.
The core mission of the IceCube Neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux, and constrains its origin. In addition, the spectrum, composition and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of IceCube data, and their implications on our understanding of cosmic rays.
132 - T. Abu-Zayyad , R. Aida , M. Allen 2012
The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays with primary energies above 1.6 x 10^(18) eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 x 10^(18) eV and a steepening at 5.4 x 10^(19) eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of ultra-high energy cosmic ray surface detector data, that involves generating a complete simulation of ultra-high energy cosmic rays striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the thinning approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا