Do you want to publish a course? Click here

Buying Private Data without Verification

215   0   0.0 ( 0 )
 Added by Aaron Roth
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

We consider the problem of designing a survey to aggregate non-verifiable information from a privacy-sensitive population: an analyst wants to compute some aggregate statistic from the private bits held by each member of a population, but cannot verify the correctness of the bits reported by participants in his survey. Individuals in the population are strategic agents with a cost for privacy, ie, they not only account for the payments they expect to receive from the mechanism, but also their privacy costs from any information revealed about them by the mechanisms outcome---the computed statistic as well as the payments---to determine their utilities. How can the analyst design payments to obtain an accurate estimate of the population statistic when individuals strategically decide both whether to participate and whether to truthfully report their sensitive information? We design a differentially private peer-prediction mechanism that supports accurate estimation of the population statistic as a Bayes-Nash equilibrium in settings where agents have explicit preferences for privacy. The mechanism requires knowledge of the marginal prior distribution on bits $b_i$, but does not need full knowledge of the marginal distribution on the costs $c_i$, instead requiring only an approximate upper bound. Our mechanism guarantees $epsilon$-differential privacy to each agent $i$ against any adversary who can observe the statistical estimate output by the mechanism, as well as the payments made to the $n-1$ other agents $j eq i$. Finally, we show that with slightly more structured assumptions on the privacy cost functions of each agent, the cost of running the survey goes to $0$ as the number of agents diverges.



rate research

Read More

We study private synthetic data generation for query release, where the goal is to construct a sanitized version of a sensitive dataset, subject to differential privacy, that approximately preserves the answers to a large collection of statistical queries. We first present an algorithmic framework that unifies a long line of iterative algorithms in the literature. Under this framework, we propose two new methods. The first method, private entropy projection (PEP), can be viewed as an advanced variant of MWEM that adaptively reuses past query measurements to boost accuracy. Our second method, generative networks with the exponential mechanism (GEM), circumvents computational bottlenecks in algorithms such as MWEM and PEP by optimizing over generative models parameterized by neural networks, which capture a rich family of distributions while enabling fast gradient-based optimization. We demonstrate that PEP and GEM empirically outperform existing algorithms. Furthermore, we show that GEM nicely incorporates prior information from public data while overcoming limitations of PMW^Pub, the existing state-of-the-art method that also leverages public data.
We consider a model where an agent has a repeated decision to make and wishes to maximize their total payoff. Payoffs are influenced by an action taken by the agent, but also an unknown state of the world that evolves over time. Before choosing an action each round, the agent can purchase noisy samples about the state of the world. The agent has a budget to spend on these samples, and has flexibility in deciding how to spread that budget across rounds. We investigate the problem of choosing a sampling algorithm that optimizes total expected payoff. For example: is it better to buy samples steadily over time, or to buy samples in batches? We solve for the optimal policy, and show that it is a natural instantiation of the latter. Under a more general model that includes per-round fixed costs, we prove that a variation on this batching policy is a 2-approximation.
We study stochastic convex optimization with heavy-tailed data under the constraint of differential privacy. Most prior work on this problem is restricted to the case where the loss function is Lipschitz. Instead, as introduced by Wang, Xiao, Devadas, and Xu, we study general convex loss functions with the assumption that the distribution of gradients has bounded $k$-th moments. We provide improved upper bounds on the excess population risk under approximate differential privacy of $tilde{O}left(sqrt{frac{d}{n}}+left(frac{d}{epsilon n}right)^{frac{k-1}{k}}right)$ and $tilde{O}left(frac{d}{n}+left(frac{d}{epsilon n}right)^{frac{2k-2}{k}}right)$ for convex and strongly convex loss functions, respectively. We also prove nearly-matching lower bounds under the constraint of pure differential privacy, giving strong evidence that our bounds are tight.
Common datasets have the form of elements with keys (e.g., transactions and products) and the goal is to perform analytics on the aggregated form of key and frequency pairs. A weighted sample of keys by (a function of) frequency is a highly versatile summary that provides a sparse set of representative keys and supports approximate evaluations of query statistics. We propose private weighted sampling (PWS): A method that ensures element-level differential privacy while retaining, to the extent possible, the utility of a respective non-private weighted sample. PWS maximizes the reporting probabilities of keys and estimation quality of a broad family of statistics. PWS improves over the state of the art also for the well-studied special case of private histograms, when no sampling is performed. We empirically demonstrate significant performance gains compared with prior baselines: 20%-300% increase in key reporting for common Zipfian frequency distributions and accuracy for $times 2$-$ 8$ lower frequencies in estimation tasks. Moreover, PWS is applied as a simple post-processing of a non-private sample, without requiring the original data. This allows for seamless integration with existing implementations of non-private schemes and retaining the efficiency of schemes designed for resource-constrained settings such as massive distributed or streamed data. We believe that due to practicality and performance, PWS may become a method of choice in applications where privacy is desired.
Correlation clustering is a widely used technique in unsupervised machine learning. Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering. We propose an algorithm that achieves subquadratic additive error compared to the optimal cost. In contrast, straightforward adaptations of existing non-private algorithms all lead to a trivial quadratic error. Finally, we give a lower bound showing that any pure differentially private algorithm for correlation clustering requires additive error of $Omega(n)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا