Do you want to publish a course? Click here

Mirror energy difference and the structure of loosely bound proton-rich nuclei around A = 20

150   0   0.0 ( 0 )
 Added by Cenxi Yuan
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The properties of loosely bound proton-rich nuclei around A = 20 are investigated within the framework of nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1=2 orbit are significantly reduced in comparison with those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-baseduniversal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A = 20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.



rate research

Read More

The neutron skin of nuclei is an important fundamental property, but its accurate measurement faces many challenges. Inspired by charge symmetry of nuclear forces, the neutron skin of a neutron-rich nucleus is related to the difference between the charge radii of the corresponding mirror nuclei. We investigate this relation within the framework of the Hartree-Fock-Bogoliubov method with Skyrme interactions. Predictions for proton skins are also made for several mirror pairs in the middle mass range. For the first time the correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated simultaneously for nuclei and their corresponding mirror partners. As an example, the Ni isotopic chain with mass number $A=48-60$ is considered. These quantities are calculated within the coherent density fluctuation model using Brueckner and Skyrme energy-density functionals for isospin asymmetric nuclear matter with two Skyrme-type effective interactions, SkM* and SLy4. Results are also presented for the symmetry energy as a function of $A$ for a family of mirror pairs from selected chains of nuclei with $Z=20$, $N=14$, and $N=50$. The evolution curves show a similar behavior crossing at the $N=Z$ nucleus in each chain and a smooth growing deviation when $N eq Z$ starts. Comparison of our results for the radii and skins with those from the calculations based on high-precision chiral forces is made.
The Gamow shell model is utilized to describe nuclear observables of the weakly bound and resonance isotonic states of $^{16}$O at proton drip-line. It is hereby shown that the presence of continuum coupling leads to complex Coulomb contributions in the spectrum of these isotones. The necessity to include the effects of three-body forces, either by a direct calculation or by adding an $A$-dependence to the nucleon-nucleon interaction, already noticed in other theoretical models, is pointed out. It is also demonstrated that our approach is predictive for reaction observables.
Electric quadrupole (E2) matrix elements provide a measure of nuclear deformation and related collective structure. Ground-state quadrupole moments in particular are known to high precision in many p-shell nuclei. While the experimental electric quadrupole moment only measures the proton distribution, both proton and neutron quadrupole moments are needed to probe proton-neutron asymmetry in the nuclear deformation. We seek insight into the relation between these moments through the ab initio no-core configuration interaction (NCCI), or no-core shell model (NCSM), approach. Converged ab initio calculations for quadrupole moments are particularly challenging, due to sensitivity to long-range behavior of the wave functions. We therefore study more robustly-converged ratios of quadrupole moments: across mirror nuclides, or of proton and neutron quadrupole moments within the same nuclide. In calculations for mirror pairs in the p-shell, we explore how well the predictions for mirror quadrupole moments agree with experiment and how well isospin (mirror) symmetry holds for quadrupole moments across a mirror pair.
We present the results of a search for optical model potentials for use in the description of elastic scattering and transfer reactions involving stable and radioactive p-shell nuclei. This was done in connection with our program to use transfer reactions to obtain data for nuclear astrophysics, in particular for the determination of the astrophysical S_17 factor for 7Be(p,gamma)8B using two (7Be,8B) proton transfer reactions. Elastic scattering was measured using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted and are compared with potentials obtained from a microscopic double folding model. We use these results to find optical model potentials for unstable nuclei with emphasis on the reliability of the description they provide for peripheral proton transfer reactions. We discuss the uncertainty introduced by the procedure in the prediction of the DWBA cross sections for the (7Be,8B) reactions used in extracting the astrophysical factor S_17(0).
Electromagnetic processes in loosely bound nuclei are investigated using an analytical model. In particular, electromagnetic dissociation of $^8$B is studied and the results of our analytical model are compared to numerical calculations based on a three-body picture of the $^8$B bound state. The calculation of energy spectra is shown to be strongly model dependent. This is demonstrated by investigating the sensitivity to the rms intercluster distance, the few-body behavior, and the effects of final state interaction. In contrast, the fraction of the energy spectrum which can be attributed to E1 transitions is found to be almost model independent at small relative energies. This finding is of great importance for astrophysical applications as it provides us with a new tool to extract the E1 component from measured energy spectra. An additional, and independent, method is also proposed as it is demonstrated how two sets of experimental data, obtained with different beam energy and/or minimum impact parameter, can be used to extract the E1 component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا