The SIMPLE Phase II Dark Matter Search


Abstract in English

Phase II of SIMPLE (Superheated Instrument for Massive ParticLe Experiments) searched for astroparticle dark matter using superheated liquid C$_{2}$ClF$_{5}$ droplet detectors. Each droplet generally requires an energy deposition with linear energy transfer (LET) $gtrsim$ 150 keV/$mu$m for a liquid-to-gas phase transition, providing an intrinsic rejection against minimum ionizing particles of order 10$^{-10}$, and reducing the backgrounds to primarily $alpha$ and neutron-induced recoil events. The droplet phase transition generates a millimetric-sized gas bubble which is recorded by acoustic means. We describe the SIMPLE detectors, their acoustic instrumentation, and the characterizations, signal analysis and data selection which yield a particle-induced, true nucleation event detection efficiency of better than 97% at a 95% C.L. The recoil-$alpha$ event discrimination, determined using detectors first irradiated with neutrons and then doped with alpha emitters, provides a recoil identification of better than 99%; it differs from those of COUPP and PICASSO primarily as a result of their different liquids with lower critical LETs. The science measurements, comprising two shielded arrays of fifteen detectors each and a total exposure of 27.77 kgd, are detailed. Removal of the 1.94 kgd Stage 1 installation period data, which had previously been mistakenly included in the data, reduces the science exposure from 20.18 to 18.24 kgd and provides new contour minima of $sigma_{p}$ = 4.3 $times$ 10$^{-3}$ pb at 35 GeV/c$^{2}$ in the spin-dependent sector of WIMP-proton interactions and $sigma_{N}$ = 3.6 $times$ 10$^{-6}$ pb at 35 GeV/c$^{2}$ in the spin-independent sector. These results are examined with respect to the fluorine spin and halo parameters used in the previous data analysis.

Download