Do you want to publish a course? Click here

The Aspects code for probabilistic cross-identification of astrophysical sources: documentation and complements

230   0   0.0 ( 0 )
 Added by Michel Fioc
 Publication date 2014
  fields Physics
and research's language is English
 Authors Michel Fioc




Ask ChatGPT about the research

Aspects ([asp{epsilon}], ASsociation PositionnellE/ProbabilistE de CaTalogues de Sources in French) is a Fortran 95 code for the cross-identification of astrophysical sources. Its source files are freely available. Given the coordinates and positional uncertainties of all the sources in two catalogs K and K, Aspects computes the probability that an object in K and one in K are the same or that they have no counterpart. Three exclusive assumptions are considered: (1) Several-to-one associations: a K-source has at most one counterpart in K, but a K-source may have several counterparts in K; (2) One-to-several associations: the same with K and K swapped; (3) One-to-one associations: a K-source has at most one counterpart in K and vice versa. To compute the probabilities of association, Aspects needs the a priori (i.e. ignoring positions) probability that an object has a counterpart. The code obtains estimates of this quantity by maximizing the likelihood to observe all the sources at their effective positions under each assumption. The likelihood may also be used to determine the most appropriate model, given the data, or to estimate the typical positional uncertainty if unknown.



rate research

Read More

227 - Michel Fioc 2012
We describe a probabilistic method of cross-identifying astrophysical sources in two catalogs from their positions and positional uncertainties. The probability that an object is associated with a source from the other catalog, or that it has no counterpart, is derived under two exclusive assumptions: first, the classical case of several-to-one associations, and then the more realistic but more difficult problem of one-to-one associations. In either case, the likelihood of observing the objects in the two catalogs at their effective positions is computed and a maximum likelihood estimator of the fraction of sources with a counterpart -- a quantity needed to compute the probabilities of association -- is built. When the positional uncertainty in one or both catalogs is unknown, this method may be used to estimate its typical value and even to study its dependence on the size of objects. It may also be applied when the true centers of a source and of its counterpart at another wavelength do not coincide. To compute the likelihood and association probabilities under the different assumptions, we developed a Fortran 95 code called Aspects ([asp{epsilon}], ASsociation PositionnellE/ProbabilistE de CaTalogues de Sources in French); its source files are made freely available. To test Aspects, all-sky mock catalogs containing up to 10^5 objects were created, forcing either several-to-one or one-to-one associations. The analysis of these simulations confirms that, in both cases, the assumption with the highest likelihood is the right one and that estimators of unknown parameters built for the appropriate association model are reliable.
Pegase.3 is a Fortran 95 code modeling the spectral evolution of galaxies from the far-ultraviolet to submillimeter wavelengths. It also follows the chemical evolution of their stars, gas and dust. For a given scenario (a set of parameters defining the history of mass assembly, the star formation law, the initial mass function...), Pegase.3 consistently computes the following: * the star formation, infall, outflow and supernova rates from 0 to 20 Gyr; * the stellar metallicity, the abundances of main elements in the gas and the composition of dust; * the unattenuated stellar spectral energy distribution (SED); * the nebular SED, using nebular continua and emission lines precomputed with code Cloudy (Ferland et al. 2017); * the attenuation in star-forming clouds and the diffuse interstellar medium, by absorption and scattering on dust grains, of the stellar and nebular SEDs. For this, the code uses grids of the transmittance for spiral and spheroidal galaxies. We precomputed these grids through Monte Carlo simulations of radiative transfer based on the method of virtual interactions; * the re-emission by grains of the light they absorbed, taking into account stochastic heating. The main innovation compared to Pegase.2 is the modeling of dust emission and its evolution. The computation of nebular emission has also been entirely upgraded to take into account metallicity effects and infrared lines. Other major differences are that complex scenarios of evolution (derived for instance from cosmological simulations), with several episodes of star formation, infall or outflow, may now be implemented, and that the detailed evolution of the most important elements -- not only the overall metallicity -- is followed.
We present a general probabilistic formalism for cross-identifying astronomical point sources in multiple observations. Our Bayesian approach, symmetric in all observations, is the foundation of a unified framework for object matching, where not only spatial information, but physical properties, such as colors, redshift and luminosity, can also be considered in a natural way. We provide a practical recipe to implement an efficient recursive algorithm to evaluate the Bayes factor over a set of catalogs with known circular errors in positions. This new methodology is crucial for studies leveraging the synergy of todays multi-wavelength observations and to enter the time-domain science of the upcoming survey telescopes.
235 - Michel Fioc 2012
We describe a simple probabilistic method to cross-identify astrophysical sources from different catalogs and provide the probability that a source is associated with a source from another catalog or that it has no counterpart. When the positional uncertainty in one of the catalog is unknown, this method may be used to derive its typical value and even to study its dependence on the size of objects. It may also be applied when the true centers of a source and of its counterpart at another wavelength do not coincide. We extend this method to the case when there are only one-to-one associations between the catalogs.
Modern astronomy increasingly relies upon systematic surveys, whose dedicated telescopes continuously observe the sky across varied wavelength ranges of the electromagnetic spectrum; some surveys also observe non-electromagnetic messengers, such as high-energy particles or gravitational waves. Stars and galaxies look different through the eyes of different instruments, and their independent measurements have to be carefully combined to provide a complete, sound picture of the multicolor and eventful universe. The association of an objects independent detections is, however, a difficult problem scientifically, computationally, and statistically, raising varied challenges across diverse astronomical applications. The fundamental problem is finding records in survey databases with directions that match to within the direction uncertainties. Such astronomic
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا