No Arabic abstract
Within an extended chiral constituent quark formalism, we investigate contributions from all possible five-quark components in the octet baryons to the pion-baryon ($sigma_{pi B}$) and strangeness-baryon ($sigma_{s B}$) sigma terms; $B equiv N,~Lambda,~Sigma,~Xi$. The probabilities of the quark-antiquark components in the ground-state baryon octet wave functions are calculated by taking the baryons to be admixtures of three- and five-quark components, with the relevant transitions handled {it via} the $^{3}$P$_{0}$ mechanism. Predictions for $sigma_{pi B}$ and $sigma_{s B}$ obtained by using input parameters taken from the literature are reported. Our results turn out to be, in general, consistent with the findings via lattice QCD and chiral perturbation theory.
We have performed a study of the isovector, octet and singlet axial charges of the proton in an extended chiral constituent quark model, where all the possible $uudqbar{q}$~($q=u,d,s$) five-quark Fock components in the proton wave function are taken into account. The $^3P_0$ quark-antiquark creation mechanism is assumed to account for the transition coupling between three- and five-quark components in proton, and the corresponding transition coupling strength is fixed by fitting the intrinsic sea flavor asymmetry $bar{d}-bar{u}$ data for proton. Accordingly, with all the parameters fixed by empirical values, the probabilities of the intrinsic five-quark Fock components in proton wave function should be $sim30 - 50%$, which lead to the numerical results for quark spin $Delta u$, $Delta d$ and $Delta s$, as well the axial charges of proton consistent with the experimental data and predictions by other theoretical approaches.
Combining the recent developments of the observations of $Omega$ sates we calculate the $Omega$ spectrum up to the $N=2$ shell within a nonrelativistic constituent quark potential model. Furthermore, the strong and radiative decay properties for the $Omega$ resonances within the $N=2$ shell are evaluated by using the masses and wave functions obtained from the potential model. It is found that the newly observed $Omega(2012)$ resonance is most likely to be the spin-parity $J^P=3/2^-$ $1P$-wave state $Omega(1^{2}P_{3/2^{-}})$, it also has a large potential to be observed in the $Omega(1672)gamma$ channel. Our calculation shows that the 1$P$-, 1$D$-, and 2$S$-wave $Omega$ baryons have a relatively narrow decay width of less than 50 MeV. Based on the obtained decay properties and mass spectrum, we further suggest optimum channels and mass regions to find the missing $Omega$ resonances via the strong and/or radiative decay processes.
We report an analysis of the octet baryon masses using the covariant baryon chiral perturbation theory up to next-to-next-to-next-to-leading order with and without the virtual decuplet contributions. Particular attention is paid to the finite-volume corrections and the finite lattice spacing effects on the baryon masses. A reasonable description of all the publicly available $n_f=2+1$ lattice QCD data is achieved.Utilyzing the Feynman-Hellmann theorem, we determine the nucleon sigma terms as $sigma_{pi N}=55(1)(4)$ MeV and $sigma_{sN}=27(27)(4)$ MeV.
We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD artifacts, the finite-volume corrections and finite lattice spacing discretization effects are carefully examined. We performed a simultaneous fit of all the $n_f = 2+1$ lattice octet baryon masses and found that the various lattice simulations are consistent with each other. Although the finite lattice spacing discretization effects up to $mathcal{O}(a^2)$ can be safely ignored, but the finite volume corrections cannot even for configurations with $M_phi L>4$. As an application, we predicted the octet baryon sigma terms using the Feynman-Hellmann theorem. In particular, the pion- and strangeness-nucleon sigma terms are found to be $sigma_{pi N} = 55(1)(4)$ MeV and $sigma_{sN} = 27(27)(4)$ MeV, respectively.
We evaluate the pion-nucleon and the pion-Delta sigma terms by employing the method of quantum chromodynamics (QCD) sum rules. The obtained value of the pion-nucleon sigma term is compatible with the larger values already anticipated by the recent calculations. It is also found that the pion-Delta sigma term is as large as the pion-nucleon sigma term.