No Arabic abstract
Quantum teleportation circumvents the uncertainty principle using dual channels: a quantum one consisting of previously-shared entanglement, and a classical one, together allowing the disembodied transport of an unknown quantum state over distance. It has recently been shown that a classical bit can be counterfactually communicated between two parties in empty space, Alice and Bob. Here, by using our dual version of the chained quantum Zeno effect to achieve a counterfactual CNOT gate, we propose the first protocol for transporting an unknown qubit counterfactually, that is without any physical particles travelling between Alice and Bob - no classical channel and no previously-shared entanglement.
Undoing a unitary operation, $i.e$. reversing its action, is the task of canceling the effects of a unitary evolution on a quantum system, and it may be easily achieved when the unitary is known. Given a unitary operation without any specific description, however, it is a hard and challenging task to realize the inverse operation. Recently, a universal quantum circuit has been proposed [Phys.Rev.Lett. 123, 210502 (2019)] to undo an arbitrary unknown $d$-dimensional unitary $U$ by implementing its inverse with a certain probability. In this letter, we report the experimental reversing of three single-qubit unitaries $(d = 2)$ by linear optical elements. The experimental results prove the feasibility of the reversing scheme, showing that the average fidelity of inverse unitaries is $F=0.9767pm0.0048$, in close agreement with the theoretical prediction.
Quantum resetting protocols allow a quantum system to be sent to a state in the past by making it interact with quantum probes when neither the free evolution of the system nor the interaction is controlled. We experimentally verify the simplest non-trivial case of a quantum resetting protocol, known as the $mathcal{W}_4$ protocol, with five superconducting qubits, testing it with different types of free evolutions and target-probe interactions. After projection, we obtained a reset state fidelity as high as $0.951$, and the process fidelity was found to be $0.792$. We also implemented 100 randomly-chosen interactions and demonstrated an average success probability of $0.323$ for $|1rangle$ and $0.292$ for $|-rangle$, experimentally confirmed the nonzero probability of success for unknown interactions; the numerical simulated values are about $0.3$. Our experiment shows that the simplest quantum resetting protocol can be implemented with current technologies, making such protocols a valuable tool in the eternal fight against unwanted evolution in quantum systems.
The problem of combating de-coherence by weak measurements has already been studied for the amplitude damping channel and for specific input states. We generalize this to a large four-parameter family of qubit channels and for the average fidelity over all pure states. As a by-product we classify all the qubit channels which have one invariant pure state and show that the parameter manifold of these channels is isomorphic to $S^2times S^1times S^1$ and contains many interesting subclasses of channels. The figure of merit that we use is the average input-output fidelity which we show can be increased up to $30$ percents in some cases, by tuning of the weak measurement parameter.
We present a way of directly manipulating an arbitrary qubit, without the exchange of any particles. This includes as an application the exchange-free preparation of an arbitrary quantum state at Alice by a remote classical Bob. As a result, we are able to propose a protocol that allows one party to directly enact, by means of a suitable program, any computation exchange-free on a remote second partys unknown qubit. Further, we show how to use this for the exchange-free control of a universal two-qubit gate, thus opening the possibility of directly enacting any desired algorithm remotely on a programmable quantum circuit.
While it is known that unconditionally secure position-based cryptography is impossible both in the classical and the quantum setting, it has been shown that some quantum protocols for position verification are secure against attackers which share a quantum state of bounded dimension. In this work, we consider the security of two protocols for quantum position verification that combine a single qubit with classical strings of total length $2n$: The qubit routing protocol, where the classical information prescribes the qubits destination, and a variant of the BB84-protocol for position verification, where the classical information prescribes in which basis the qubit should be measured. We show that either protocol is secure for a randomly chosen function if each of the attackers holds at most $n/2 - 5$ qubits. With this, we show for the first time that there exists a quantum position verification protocol where the ratio between the quantum resources an honest prover needs and the quantum resources the attackers need to break the protocol is unbounded. The verifiers need only increase the amount of classical resources to force the attackers to use more quantum resources. Concrete efficient functions for both protocols are also given -- at the expense of a weaker but still unbounded ratio of quantum resources for successful attackers. Finally, we show that both protocols are robust with respect to noise, making them appealing for applications.