Do you want to publish a course? Click here

How Robust Are the Size Measurements of High-redshift Compact Galaxies?

89   0   0.0 ( 0 )
 Added by Roozbeh Davari
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive quiescent galaxies at $z approx 2$ are apparently much more compact than galaxies of comparable mass today. How robust are these size measurements? We perform comprehensive simulations to determine possible biases and uncertainties in fitting single-component light distributions to real galaxies. In particular, we examine the robustness of the measurements of the luminosity, size, and other structural parameters. We devise simulations with increasing realism to systematically disentangle effects due to the technique (specifically using GALFIT) and the intrinsic structures of the galaxies. By accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at $z approx 2$ are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. In fact, we find that fitting multi-component galaxies with a single Sersic profile, the procedure most commonly adopted in the literature, biases the inferred sizes higher by up to 10% - 20%, which accentuates the amount of size evolution required. If the sky estimation has been done robustly and the model for the point-spread function is fairly accurate, GALFIT can retrieve the properties of single-component galaxies over a wide range of signal-to-noise ratios without introducing any systematic errors.



rate research

Read More

334 - Adam Muzzin 2009
Using a sample of nine massive compact galaxies at z ~ 2.3 with rest-frame optical spectroscopy and comprehensive U through 8um photometry we investigate how assumptions in SED modeling change the stellar mass estimates of these galaxies, and how this affects our interpretation of their size evolution. The SEDs are fit to Tau-models with a range of metallicities, dust laws, as well as different stellar population synthesis codes. These models indicate masses equal to, or slightly smaller than our default masses. The maximum difference is 0.16 dex for each parameter considered, and only 0.18 dex for the most extreme combination of parameters. Two-component populations with a maximally old stellar population superposed with a young component provide reasonable fits to these SEDs using the models of Bruzual & Charlot (2003); however, using models with updated treatment of TP-AGB stars the fits are poorer. The two-component models predict masses that are 0.08 to 0.22 dex larger than the Tau-models. We also test the effect of a bottom-light IMF and find that it would reduce the masses of these galaxies by 0.3 dex. Considering the range of allowable masses from the Tau-models, two-component fits, and IMF, we conclude that on average these galaxies lie below the mass-size relation of galaxies in the local universe by a factor of 3-9, depending on the SED models used.
We compare the relations among various integrated characteristics of ~25,000 low-redshift (z<1.0) compact star-forming galaxies (CSFGs) from Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and of high-redshift (z>1.5) star-forming galaxies (SFGs) with respect to oxygen abundances, stellar masses M*, far-UV absolute magnitudes M(FUV), star-formation rates SFR and specific star-formation rates sSFR, Lyman-continuum photon production efficiencies (xi_ion), UV continuum slopes beta, [OIII]5007/[OII]3727 and [NeIII]3868/[OII]3727 ratios, and emission-line equivalent widths EW([OII]3727), EW([OIII]5007), and EW(Halpha). We find that the relations for low-z CSFGs with high equivalent widths of the Hbeta emission line, EW(Hbeta)>100A, and high-z SFGs are very similar, implying close physical properties in these two categories of galaxies. Thus, CSFGs are likely excellent proxies for the SFGs in the high-z Universe. They also extend to galaxies with lower stellar masses, down to ~10^6 Msun, and to absolute FUV magnitudes as faint as -14 mag. Thanks to their proximity, CSFGs can be studied in much greater detail than distant SFGs. Therefore, the relations between the integrated characteristics of the large sample of CSFGs studied here can prove very useful for our understanding of high-z dwarf galaxies in future observations with large ground-based and space telescopes.
119 - M. Chevance 2012
Recent deep Hubble Space Telescope WFC3 imaging suggests that a majority of compact quiescent massive galaxies at z~2 may contain disks. To investigate this claim, we have compared the ellipticity distribution of 31 carefully selected high-redshift massive quiescent compact galaxies to a set of mass-selected ellipticity and Sersic index distributions obtained from 2D structural fits to ~40,000$ nearby galaxies from the Sloan Digital Sky Survey. A Kolmogorov-Smirnov test shows that the distribution of ellipticities for the high-redshift galaxies is consistent with the ellipticity distribution of a similarly chosen sample of massive early-type galaxies. However the distribution of Sersic indices for the high-redshift sample is inconsistent with that of local early-type galaxies, and instead resembles that of local disk-dominated populations. The mismatch between the properties of high-redshift compact galaxies and those of both local early-type and disk-dominated systems leads us to conclude that the basic structures of high-redshift compact galaxies probably do not closely resemble those of any single local galaxy population. Any galaxy population analog to the high-redshift compact galaxies that exists at the current epoch is either a mix of different types of galaxies, or possibly a unique class of objects on their own.
The goal of this work is to understand whether the extreme environment of compact groups can affect the distribution and abundance of faint galaxies around them. We performed an analysis of the faint galaxy population in the vicinity of compact groups and normal groups. We built a light-cone mock galaxy catalogue constructed from the Millennium Run Simulation II plus a semi-analytical model of galaxy formation. We identified a sample of compact groups in the mock catalogue as well as a control sample of normal galaxy groups and computed the projected number density profiles of faint galaxies around the first- and the second-ranked galaxies. We also compared the profiles obtained from the semi-analytical galaxies in compact groups with those obtained from observational data. In addition, we investigated whether the ranking or the luminosity of a galaxy is the most important parameter in the determination of the centre around which the clustering of faint galaxies occurs. There is no particular influence of the extreme compact group environment on the number of faint galaxies in such groups compared to control groups. When selecting normal groups with separations between the 1st and 2nd ranked galaxies similar to what is observed in compact groups, the faint galaxy projected number density profiles in compact groups and normal groups are similar in shape and height. We observed a similar behaviour of the population of faint galaxies in observations and simulations in the regions closer to the 1st and 2nd ranked galaxies. Finally, we find that the projected density of faint galaxies is higher around luminous galaxies,regardless of the ranking in the compact group. The semi-analytical approach shows that compact groups and their surroundings do not represent a hostile enough environment to make faint galaxies to behave differently than in normal groups.
114 - R. Neri , P. Cox , A. Omont 2019
Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we conducted a program to measure redshifts for 13 bright galaxies detected in the Herschel Astrophysical Large Area Survey (H-ATLAS) with $S_{500{mu}rm m}ge$80 mJy. We report reliable spectroscopic redshifts for 12 individual sources, which are derived from scans of the 3 and 2 mm bands, covering up to 31 GHz in each band, and are based on the detection of at least two emission lines. The spectroscopic redshifts are in the range $2.08<z<4.05$ with a median value of $z=2.9pm$0.6. The sources are unresolved or barely resolved on scales of 10 kpc. In one field, two galaxies with different redshifts were detected. In two cases the sources are found to be binary galaxies with projected distances of ~140 kpc. The linewidths of the sources are large, with a mean value for the full width at half maximum of 700$pm$300 km/s and a median of 800 km/s. We analyse the nature of the sources with currently available ancillary data to determine if they are lensed or hyper-luminous $L_{rm FIR} > 10^{13},L_odot$ galaxies. We also present a reanalysis of the spectral energy distributions including the continuum flux densities measured at 3 and 2 mm to derive the overall properties of the sources. Future prospects based on these efficient measurements of redshifts of high-z galaxies using NOEMA are outlined, including a comprehensive survey of all the brightest Herschel galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا