No Arabic abstract
We present a detailed study of the stellar and HI structure of the dwarf irregular galaxies SextansA and SextansB, members of the NGC3109 association. We use newly obtained deep (r~26.5) and wide field g,r photometry to extend the Surface Brightness (SB) profiles of the two galaxies down to mu_V~ 31.0 mag/arcsec^2. We find that both galaxies are significantly more extended than what previously traced with surface photometry, out to ~4 kpc from their centers along their major axis. Older stars are found to have more extended distribution with respect to younger populations. We obtain the first estimate of the mean metallicity for the old stars in SexB, from the color distribution of the Red Giant Branch, <[Fe/H]>=-1.6. The SB profiles show significant changes of slope and cannot be fitted with a single Sersic model. Both galaxies have HI discs as massive as their respective stellar components. In both cases the HI discs display solid-body rotation with maximum amplitude of ~50 km/s (albeit with significant uncertainty due to the poorly constrained inclination), implying a dynamical mass ~10^{9}~M_sun, a mass-to-light ratio M/L_V~25 and a dark-to-barionic mass ratio of ~10. The distribution of the stellar components is more extended than the gaseous disc in both galaxies. We find that the main, approximately round-shaped, stellar body of Sex~A is surrounded by an elongated low-SB stellar halo that can be interpreted as a tidal tail, similar to that found in another member of the same association (Antlia). We discuss these, as well as other evidences of tidal disturbance, in the framework of a past passage of the NGC3109 association close to the Milky Way, that has been hypothesized by several authors and is also supported by the recently discovered filamentary configuration of the association itself.
Five planetary nebulae (PNe) have been discovered in the nearby dwarf irregular galaxy. Emission line images were obtained using the Wide Field Camera of the 2.5m Isaac Newton Telescope (INT) at La Palma (Spain). The candidate PNe were identified by their point-like appearance and relatively strong [OIII] emission-line fluxes. They are located within a galactocentric distance of 2.8 arcmin, corresponding to 1.1 kpc at the distance of Sextans B. Luminosities are in the range 1800--5600Lsolar. Sextans B is one of the smallest dwarf irregular galaxies with a PN population. The number of PNe detected suggest an enhanced star formation rate between 1 and 5 Gyr ago.
The shallow faint-end slope of the galaxy mass function is usually reproduced in $Lambda$CDM galaxy formation models by assuming that the fraction of baryons that turns into stars drops steeply with decreasing halo mass and essentially vanishes in haloes with maximum circular velocities $V_{rm max}<20$-$30$ km/s. Dark matter-dominated dwarfs should therefore have characteristic velocities of about that value, unless they are small enough to probe only the rising part of the halo circular velocity curve (i.e., half-mass radii, $r_{1/2}ll 1$ kpc). Many dwarfs have properties in disagreement with this prediction: they are large enough to probe their halo $V_{rm max}$ but their characteristic velocities are well below $20$ km/s. These `cold faint giants (an extreme example is the recently discovered Crater 2 Milky Way satellite) can only be reconciled with our $Lambda$CDM models if they are the remnants of once massive objects heavily affected by tidal stripping. We examine this possibility using the APOSTLE cosmological hydrodynamical simulations of the Local Group. Assuming that low velocity dispersion satellites have been affected by stripping, we infer their progenitor masses, radii, and velocity dispersions, and find them in remarkable agreement with those of isolated dwarfs. Tidal stripping also explains the large scatter in the mass discrepancy-acceleration relation in the dwarf galaxy regime: tides remove preferentially dark matter from satellite galaxies, lowering their accelerations below the $a_{rm min}sim 10^{-11} m/s^2$ minimum expected for isolated dwarfs. In many cases, the resulting velocity dispersions are inconsistent with the predictions from Modified Newtonian Dynamics, a result that poses a possibly insurmountable challenge to that scenario.
We present the analysis of the FLAMES dataset targeting the central 25 arcmin region of the Sextans dSph. This dataset is the third major part of the high resolution spectroscopic section of the ESO large program 171.B-0588(A) obtained by the Dwarf galaxy Abundances and Radial-velocities Team (DART). Our sample is composed of red giant branch stars down to the level of the horizontal branch in Sextans. It allows to address questions related to both stellar nucleosynthesis and galaxy evolution. We provide metallicities for 81 stars, which cover the wide [Fe/H]=$-$3.2 to $-$1.5 dex range. The abundances of 10 other elements are derived: Mg, Ca, Ti, Sc, Cr, Mn, Co, Ni, Ba, and Eu. Despite its small mass, Sextans is a chemically evolved system, with evidence for the contribution of core-collapse and Type Ia supernovae as well as low metallicity AGBs. This new FLAMES sample offers a sufficiently large number of stars with chemical abundances derived at high accuracy to firmly establish the existence of a plateau in [$alpha$/Fe] at $sim 0.4$ dex, followed by a decrease above [Fe/H]$sim-2$ dex. This is in stark similarity with the Fornax and Sculptor dSphs despite their very different masses and star formation histories. This suggests that these three galaxies had very similar star formation efficiencies in their early formation phases, probably driven by the early accretion of smaller galactic fragments, until the UV-background heating impacted them in different ways. The parallel between the Sculptor and Sextans dSph is also striking when considering Ba and Eu. Finally, as to the iron-peak elements, the decline of [Co/Fe] and [Ni/Fe] above [Fe/H]$sim -2$ implies that the production yields of Ni and Co in SNeIa is lower than that of Fe. The decrease in [Ni/Fe] favours models of SNeIa based on the explosion of double degenerate sub-Chandrasekhar mass white dwarfs.
We study the evolved stellar population of the galaxy Sextans A. This galaxy is one of the lowest metallicity dwarfs in which variable asymptotic giant branch stars have been detected, suggesting that little metal enrichment took place during the past history. The analysis consists in the characterization of a sample of evolved stars, based on evolutionary tracks of asymptotic giant branch and red super giant stars, which include the description of dust formation in their winds. Use of mid-infrared and near-infrared data allowed us to identify carbon-rich sources, stars undergoing hot bottom burning and red super giants. The dust production rate, estimated as $6times 10^{-7} M_{odot}/$yr, is dominated by $sim 10$ carbon stars, with a small contribution of higher mass M-stars, of the order of $4times 10^{-8} M_{odot}/$yr. The importance of this study to understand how dust production works in metal-poor environments is also evaluated.
We present the high-resolution spectroscopic analysis of two new extremely metal-poor stars (EMPS) candidates in the dwarf spheroidal galaxy Sextans. These targets were pre-selected from medium resolution spectra centered around the Ca II triplet in the near-infrared and followed-up at higher resolution with VLT/UVES. We confirm their low metallicities with [Fe/H]=-2.95 and [Fe/H]=-3.01, placing them among the most metal-poor stars known in Sextans. The abundances of 18 elements, including C, Na, the alpha-elements, Fe-peak, and neutron capture elements, are determined. In particular, we present the first measurements of Zn in a classical dwarf at extremely low metallicity. There has been previous hints of a large scatter in the abundance ratios of the Sextans stellar population around [Fe/H] -3 when compared to other galaxies. We took the opportunity of this work to re-analyse the full sample of EMPS and find a Milky-Way -like plateau and a normal dispersion at fixed metallicity.