Do you want to publish a course? Click here

Charge Transfer Kinetics at the Solid-Solid Interface in Porous Electrodes

465   0   0.0 ( 0 )
 Added by Peng Bai
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interfacial charge transfer is widely assumed to obey Butler-Volmer kinetics. For certain liquid-solid interfaces, Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple method to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface, rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidseys method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modeling batteries and other electrochemical systems.



rate research

Read More

189 - Peng Bai , Guangyu Tian 2012
Using a simple mathematical model, we demonstrate that statistical kinetics of phase-transforming nanoparticles in porous electrodes results in macroscopic non-monotonic transient currents, which could be misinterpreted as the nucleation and growth mechanism by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory. Our model decouples the roles of nucleation and surface reaction in the electrochemically driven phase-transformation process by a special activation rate and the mean particle-filling speed of active nanoparticles, which can be extracted from the responses of porous electrodes to identify the dynamics in single composing nanoparticles.
Boundary conditions for the solid-liquid interface of the solidifying pure melt have been derived. In the derivation the model of Gibbs interface is used. The boundary conditions include both the state quantities of bulk phases are taken at the interface and the quantities characterizing interfacial surface such as the surface temperature and the surface heat flux. Introduction of the surface temperature as an independent variable allows us to describe the scattering energy at the interface. For the steady-state motion of the planar interface the expression for the temperature discontinuity across the phase boundary has been obtained. Effect of Kapitza resistance on the interface velocity is considered. It is shown that heat resistance leads to non-linearity in solidification kinetics, namely, in velocity-undercooling relationship. The conditions of the steady--state motion of the planar interface has been found.
The interface stresses at of the solid-melt interface are, in general, anisotropic. The anisotropy in the interfacial stress can be evaluated using molecular dynamics (MD) and phase field crystal (PFC) models. In this paper, we report our results on the evaluation of the anisotropy in interface stress in a BCC solid with its melt. Specifically, we study Fe using both MD and PFC models. We show that while both MD and PFC can be used for the evaluation, and the PFC and the amplitude equations based on PFC give quantitatively consistent results, the MD and PFC results are qualitatively the same but do not match quantitatively. We also find that even though the interfacial free energy is only weakly anisotropic in BCC interfacial stress anisotropy is strong. This strong anisotropy has implications for the equilibrium shapes, growth morphologies and other properties at nano-scale in these materials.
By means of Density Functional Theory calculations we evaluate several lithium carbonate - graphite interface models as a prototype of the Solid Electrolyte Interphase capping layer on graphite anodes in lithium-ion batteries. It is found that only an (a,b)-oriented Li2CO3 slab promotes tight binding with graphite. Such mutual organization of the components combines their structural features and reproduces coordination environment of ions, resulting in an adhesive energy of 116 meV/{AA}2 between graphite and lithium carbonate. This model also presents a high potential affinity with bulk. The corresponding charge distribution at such interface induces an electric potential gradient, such a gradient having been experimentally observed. We regard the mentioned criteria as the key descriptors of the interface stability and recommend them as the principal assessments for such interface study. In addition, we evaluate the impact of lithiated graphite on the stability of the model interface and study the generation of different point defects as mediators for Li interface transport. It is found that Li diffusion is mainly provided by interstitials. The induced potential gradient fundamentally assists the intercalation up to lithiation ratio of 70%.
132 - Hanyu Liu , Yanming Ma 2012
The recent discovery of phase IV of solid hydrogen and deuterium consisting of two alternate layers of graphenelike three-molecule rings and unbound H2 molecules have generated great interests. However, vibrational nature of phase IV remains poorly understood. Here, we report a peculiar proton transfer and a simultaneous rotation of three molecule rings in graphenelike layers predicted by ab initio variable cell molecular dynamics simulations for phase IV of solid hydrogen and deuterium at pressure ranges of from 250 to 350 GPa and temperature range of from 300 to 500 K. This proton transfer is intimately related to the particular elongation of molecules in graphenelike layers, and it becomes more pronounced with increasing pressure at the course of larger elongation of molecules. As the consequence of proton transfer, hydrogen molecules in graphenelike layers are short lived and hydrogen vibration is strongly anharmonic. Our findings provide direct explanations on the observed abrupt increase of Raman width at the formation of phase IV and its large increase with pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا