No Arabic abstract
We use K-band spectroscopy of the counterpart to the rapidly variable X-ray transient XMMU J174445.5-295044 to identify it as a new symbiotic X-ray binary. XMMU J174445.5-295044 has shown a hard X-ray spectrum (we verify its association with an Integral/IBIS 18-40 keV detection in 2013 using a short Swift/XRT observation), high and varying N$_H$, and rapid flares on timescales down to minutes, suggesting wind accretion onto a compact star. We observed its near-infrared counterpart using the Near-infrared Integral Field Spectrograph (NIFS) at Gemini-North, and classify the companion as ~ M2 III. We infer a distance of $3.1^{+1.8}_{-1.1}$ kpc (conservative 1-sigma errors), and therefore calculate that the observed X-ray luminosity (2-10 keV) has reached to at least 4$times10^{34}$ erg/s. We therefore conclude that the source is a symbiotic X-ray binary containing a neutron star (or, less likely, black hole) accreting from the wind of a giant.
The Galactic Bulge Survey is a wide but shallow X-ray survey of regions above and below the Plane in the Galactic Bulge. It was performed using the Chandra X-ray Observatorys ACIS camera. The survey is primarily designed to find and classify low luminosity X-ray binaries. The combination of the X-ray depth of the survey and the accessibility of optical and infrared counterparts makes this survey ideally suited to identification of new symbiotic X-ray binaries in the Bulge. We consider the specific case of the X-ray source CXOGBS J173620.2-293338. It is coincident to within 1 arcsec with a very red star, showing a carbon star spectrum and irregular variability in the Optical Gravitational Lensing Experiment data. We classify the star as a late C-R type carbon star based on its spectral features, photometric properties, and variability characteristics, although a low-luminosity C-N type cannot be ruled out. The brightness of the star implies it is located in the Bulge, and its photometric properties overall are consistent with the Bulge carbon star population. Given the rarity of carbon stars in the Bulge, we estimate the probability of such a close chance alignment of any Galactic Bulge Survey source with a carbon star to be <1e-3 suggesting that this is likely to be a real match. If the X-ray source is indeed associated with the carbon star, then the X-ray luminosity is around 9e32 erg/s. Its characteristics are consistent with a low luminosity symbiotic X-ray binary, or possibly a low accretion rate white dwarf symbiotic.
Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. The system has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims. We study variability of GX 1+4 on long time-scale in X-ray and optical bands. Methods. The presented X-ray observations are from INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. The optical observations are from INTEGRAL Optical Monitoring Camera. Results. The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by ~50-70d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum, which confirms the 1161d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.
We present the discovery of ASASSN-18ey (MAXI J1820+070), a new black hole low-mass X-ray binary discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). A week after ASAS-SN discovered ASASSN-18ey as an optical transient, it was detected as an X-ray transient by MAXI/GCS. Here, we analyze ASAS-SN and Asteroid Terrestrial-impact Last Alert System (ATLAS) pre-outburst optical light curves, finding evidence of intrinsic variability for several years prior to the outburst. While there was no long-term rise leading to outburst, as has been seen in several other systems, the start of the outburst in the optical preceded that in the X-rays by $7.20pm0.97~rm days$. We analyze the spectroscopic evolution of ASASSN-18ey from pre-maximum to $> 100~rm days$ post-maximum. The spectra of ASASSN-18ey exhibit broad, asymmetric, double-peaked H$alpha$ emission. The Bowen blend ($lambda approx 4650$AA) in the post-maximum spectra shows highly variable double-peaked profiles, likely arising from irradiation of the companion by the accretion disk, typical of low-mass X-ray binaries. The optical and X-ray luminosities of ASASSN-18ey are consistent with black hole low-mass X-ray binaries, both in outburst and quiescence.
Radio pulsars with millisecond spin periods are thought to have been spun up by transfer of matter and angular momentum from a low-mass companion star during an X-ray-emitting phase. The spin periods of the neutron stars in several such low-mass X-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the last decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.
Symbiotic X-ray Binaries (SyXBs) are a recently discovered subclass of Low Mass X-ray Binaries. Their growing number makes them an important evolutionary channel of X-ray Binaries. Our goal is to perform spectral analysis and classification of the proposed counterparts to IGR J16358-4726 and IGR J16393-4643 and to establish their nature as X-ray systems. We used the ESO/UT1 ISAAC spectrograph to observe the proposed counterparts to the two sources, obtaining K-band medium resolution spectra (R = 500) with a S/N > 140. Data reduction was performed with the standard procedure. We classified them by means of comparison with published atlases. We performed SED fitting in order to refine the spectral classification. The two counterparts clearly exhibit the typical features of late-type stars, notably strong CO absorption bands in the red part of the spectrum. With information from previous X-ray studies, we classify the two systems as two new members of the SyXB class. For IGR J16393-4643, we considered the most probable counterpart to the system, although three other objects cannot be completely discarded. For this system, we compared our findings with available orbital solutions, constraining the orbital parameters and the mass of the companion star. By including two more systems, we increased to eight the number of known SyXBs, which emerges as a non-negligible category of galactic X-ray binaries.