Do you want to publish a course? Click here

Measuring the translational and rotational velocity of particles in helical motion using structured light

200   0   0.0 ( 0 )
 Added by Carmelo Rosales Mr.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the rotational and translational velocity components of particles moving in helical motion using the frequency shift they induced to the structured light beam illuminating them. Under Laguerre-Gaussian mode illumination, a particle with a helical motion reflects light that acquires an additional frequency shift proportional to the angular velocity of rotation in the transverse plane, on top of the usual frequency shift due to the longitudinal motion. We determined both the translational and rotational velocities of the particles by switching between two modes: by illuminating with a Gaussian beam, we can isolate the longitudinal frequency shift; and by using a Laguerre-Gaussian mode, the frequency shift due to the rotation can be determined. Our technique can be used to characterize the motility of microorganisms with a full three-dimensional movement.



rate research

Read More

The effects of particle shape on the vibrational properties of colloidal glasses are studied experimentally. Ellipsoidal glasses are created by stretching polystyrene spheres to different aspect ratios and then suspending the resulting ellipsoidal particles in water at high packing fraction. By measuring displacement correlations between particles, we extract vibrational properties of the corresponding shadow ellipsoidal glass with the same geometric configuration and interactions as the source suspension but without damping. Low frequency modes in glasses composed of ellipsoidal particles with major/minor axis aspect ratios $sim$1.1 are observed to have predominantly rotational character. By contrast, low frequency modes in glasses of ellipsoidal particles with larger aspect ratios ($sim$3.0) exhibit a mix of rotational and translational character. All glass samples were characterized by a distribution of particles with different aspect ratios. Interestingly, even within the same sample it was found that small-aspect-ratio particles participate relatively more in rotational modes, while large-aspect-ratio particles tend to participate relatively more in translational modes.
The topological evolution of classic eigenmodes including Hermite-Laguerre-Gaussian and (helical) InceGaussian modes is exploited to construct coherent state modes, which unifies the representations of travelingwave (TW) and standing-wave (SW) ray-wave structured light for the first time and realizes the TW-SW unified ray-wave geometric beam with topology of raytrajectories splitting effect, breaking the boundary of TW and SW structured light. We experimentally generate these new modes with high purity and dynamic control by digital holography method, revealing potential applications in optical manipulation and communication.
Light beams carrying orbital angular momentum are key resources in modern photonics. In many applications, the ability of measuring the complex spectrum of structured light beams in terms of these fundamental modes is crucial. Here we propose and experimentally validate a simple method that achieves this goal by digital analysis of the interference pattern formed by the light beam and a reference field. Our approach allows one to characterize the beam radial distribution also, hence retrieving the entire information contained in the optical field. Setup simplicity and reduced number of measurements could make this approach practical and convenient for the characterization of structured light fields.
We consider a measurement of the position of a spot painted on the surface of a trapped nano-optomechanical sphere. The measurement extracts information about the position of the spot and in doing so measures a combination of the orientation and position of the sphere. The quantum back-action of the measurement entangles and correlates these two degrees of freedom. Such a measurement is not available for atoms or ions, and provides a mechanism to probe the quantum mechanical properties of trapped optomechanical spheres. In performing simulations of this measurement process we also test a numerical method introduced recently by Rouchon and collaborators for solving stochastic master equations. This method guarantees the positivity of the density matrix when the Lindblad operators for all simultaneous continuous measurements are mutually commuting. We show that it is both simpler and far more efficient than previous methods.
The use of structured light beams to detect the velocity of targets moving perpendicularly to the beams propagation axis opens new avenues for remote sensing of moving objects. However, determining the direction of motion is still a challenge since detection is usually done by means of an interferometric setup which only provides an absolute value of the frequency shift. Here, we put forward a novel method that addresses this issue. It uses dynamic control of the phase in the transverse plane of the structured light beam so that the direction of the particles movement can be deduced. This is done by noting the change in the magnitude of the frequency shift as the transverse phase of the structured light is moved appropriately. We demonstrate our method with rotating micro-particles that are illuminated by a Laguerre-Gaussian beam with a rotating phase about its propagation axis. Our method, which only requires a dynamically configurable optical beam generator, can easily be used with other types of motion by appropriate engineering and dynamic modulation of the phase of the light beam.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا