No Arabic abstract
We present a study of the $D$ and $B$ leptonic decay constants on the MILC $N_f=2+1$ asqtad gauge ensembles using asqtad-improved staggered light quarks and clover heavy quarks in the Fermilab interpretation. Our previous analysis cite{Bazavov:2011aa} computed the decay constants at lattice spacings $a approx 0.14, 0.11$ and $0.083$ fm. We have extended the simulations to finer $a approx 0.058$ and $0.043$ fm lattice spacings, and have also increased statistics; this allows us to address many important sources of uncertainty. Technical advances include a two-step two-point fit procedure, better tuning of the heavy quark masses and a better determination of the axial-vector current matching. The present analysis remains blinded, so here we focus on the improvements and their predicted impact on the error budget compared to the prior analysis.
We calculate the leptonic decay constants of B_{(s)} and D_{(s)} mesons in lattice QCD using staggered light quarks and Fermilab bottom and charm quarks. We compute the heavy-light meson correlation functions on the MILC asqtad-improved staggered gauge configurations which include the effects of three light dynamical sea quarks. We simulate with several values of the light valence- and sea-quark masses (down to ~m_s/10) and at three lattice spacings (a ~ 0.15, 0.12, and 0.09 fm) and extrapolate to the physical up and down quark masses and the continuum using expressions derived in heavy-light meson staggered chiral perturbation theory. We renormalize the heavy-light axial current using a mostly nonperturbative method such that only a small correction to unity must be computed in lattice perturbation theory and higher-order terms are expected to be small. We obtain f_{B^+} = 196.9(8.9) MeV, f_{B_s} = 242.0(9.5) MeV, f_{D^+} = 218.9(11.3) MeV, f_{D_s} = 260.1(10.8) MeV, and the SU(3) flavor-breaking ratios f_{B_s}/f_{B} = 1.229(26) and f_{D_s}/f_{D} = 1.188(25), where the numbers in parentheses are the total statistical and systematic uncertainties added in quadrature.
We present a new determination of the B and B_s meson decay constants using NRQCD b-quarks, HISQ light and strange valence quarks and the MILC collaboration N_f=2+1 lattices. The new calculations improve on HPQCDs earlier work with NRQCD b-quarks by replacing AsqTad with HISQ valence quarks, by including a more chiral MILC fine ensemble in the analysis, and by employing better tuned quark masses and overall scale. We find f_B = 0.191(9)GeV, f_{B_s} = 0.228(10)GeV and f_{B_s}/f_B = 1.188(18). Combining the new value for f_{B_s}/f_B with a recent very precise determination of the B_s meson decay constant based on HISQ b-quarks, f_{B_s} = 0.225(4)GeV, leads to f_B = 0.189(4)GeV. With errors of just 2.1% this represents the most precise f_B available today.
We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamical $u$, $d$, $s$, and $c$ quarks. We analyze over twenty isospin-symmetric ensembles with six lattice spacings down to $aapprox 0.03$~fm and several values of the light-quark mass down to the physical value $frac{1}{2}(m_u+m_d)$. We employ the highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings, discretization errors are sufficiently small that we can calculate the $B$-meson decay constants with the HISQ action for the first time directly at the physical $b$-quark mass. We obtain the most precise determinations to-date of the $D$- and $B$-meson decay constants and their ratios, $f_{D^+} = 212.7(0.6)$~MeV, $f_{D_s} = 249.9(0.4)$~MeV, $f_{D_s}/f_{D^+} = 1.1749(16)$, $f_{B^+} = 189.4 (1.4)$~MeV, $f_{B_s} = 230.7(1.3)$~MeV, $f_{B_s}/f_{B^+} = 1.2180(47)$, where the errors include statistical and all systematic uncertainties. Our results for the $B$-meson decay constants are three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the Standard-Model predictions for the rare leptonic decays $overline{mathcal{B}}(B_s to mu^+mu^-) = 3.64(11) times 10^{-9}$, $overline{mathcal{B}}(B^0 to mu^+mu^-) = 1.00(3) times 10^{-10}$, and $overline{mathcal{B}}(B^0 to mu^+mu^-)/overline{mathcal{B}}(B_s to mu^+mu^-) = 0.0273(9)$ to well below other sources of uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-quark-mass ratios and the scale-setting quantities $f_{p4s}$, $M_{p4s}$, and $R_{p4s}$. We obtain the most precise lattice-QCD determination to date of the ratio $f_{K^+}/f_{pi^+} = 1.1950(^{+16}_{-23})$~MeV.
On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $phi$. The lattice size is $48^3times96$, which corresponds to a spatial extension of $sim5.5$ fm with the lattice spacing $aapprox 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to their physical values. Our results at the physical point are $f_D=213(5)$ MeV, $f_{D_s}=249(7)$ MeV, $f_{D^*}=234(6)$ MeV, $f_{D_s^*}=274(7)$ MeV, and $f_phi=241(9)$ MeV. The couplings of $D^*$ and $D_s^*$ to the tensor current ($f_V^T$) can be derived, respectively, from the ratios $f_{D^*}^T/f_{D^*}=0.91(4)$ and $f_{D_s^*}^T/f_{D_s^*}=0.92(4)$, which are the first lattice QCD results. We also obtain the ratios $f_{D^*}/f_D=1.10(3)$ and $f_{D_s^*}/f_{D_s}=1.10(4)$, which reflect the size of heavy quark symmetry breaking in charmed mesons. The ratios $f_{D_s}/f_{D}=1.16(3)$ and $f_{D_s^*}/f_{D^*}=1.17(3)$ can be taken as a measure of SU(3) flavor symmetry breaking.
We give an update on simulation results for the decay constants f_B, f_{B_s}, f_D and f_{D_s}. These decay constants are important for precision tests of the standard model, in particular entering as inputs to the global CKM unitarity triangle fit. The results presented here make use of the MILC (2+1)-flavor asqtad ensembles, with heavy quarks incorporated using the clover action with the Fermilab method. Partially quenched, staggered chiral perturbation theory is used to extract the decay constants at the physical point. In addition, we give error projections for a new analysis in progress, based on an extended data set.