Do you want to publish a course? Click here

Electronic correlations determine the phase stability of iron up to the melting temperature

165   0   0.0 ( 0 )
 Added by Ivan Leonov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present theoretical results on the high-temperature phase stability and phonon spectra of paramagnetic bcc iron which explicitly take into account many-body effects. Several peculiarities, including a pronounced softening of the [110] transverse (T$_1$) mode and a dynamical instability of the bcc lattice in harmonic approximation are identified. We relate these features to the ${alpha}$-to-${gamma}$ and ${gamma}$-to-${delta}$ phase transformations in iron. The high-temperature bcc phase is found to be highly anharmonic and appears to be stabilized by the lattice entropy.



rate research

Read More

The intermetallic FeSi exhibits an unusual temperature dependence in its electronic and magnetic degrees of freedom, epitomized by the crossover from a low temperature non-magnetic semiconductor to a high temperature paramagnetic metal with a Curie-Weiss like susceptibility. Many proposals for this unconventional behavior have been advanced, yet a consensus remains elusive. Using realistic many-body calculations, we here reproduce the signatures of the metal-insulator crossover in various observables: the spectral function, the optical conductivity, the spin susceptibility, and the Seebeck coefficient. Validated by quantitative agreement with experiment, we then address the underlying microscopic picture. We propose a new scenario in which FeSi is a band-insulator at low temperatures and is metalized with increasing temperature through correlation induced incoherence. We explain that the emergent incoherence is linked to the unlocking of iron fluctuating moments which are almost temperature independent at short time scales. Finally, we make explicit suggestions for improving the thermoelectric performance of FeSi based systems.
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.
We report temperature-dependent surface x-ray scattering studies of the orbital ordered surface in La$_{0.5}$Sr$_{1.5}$MnO$_4$. We find that the interfacial width of the electronic order grows as the bulk ordering temperature is approached from below, though the bulk correlation length remains unchanged. Close to the transition, the surface is so rough that there is no well-defined electronic surface, despite the presence of bulk electronic order, that is the electronic surface has melted. Above the bulk transition, finite-sized isotropic fluctuations of orbital order are observed, with a correlation length equal to that of the electronic surfaces in-plane correlation length at the transition temperature.
We have carried out first-principles calculations of the Compton scattering spectra to demonstrate that the filling of the hole Fermi surface in LaO$_{1-x}$F$_{x}$FeAs produces a distinct signature in the Fourier transformed Compton spectrum when the momentum transfer vector lies along the [100] direction. We thus show how the critical concentration $x_c$, where hole Fermi surface pieces are filled up and the superconductivity mediated by antiferromagnetic spin fluctuations is expected to be suppressed, can be obtained in a bulk-sensitive manner.
Motivated by the proposal of a Weyl-semimetal phase in pyrochlore iridates, we consider a Hubbard-type model on the pyrochlore lattice. To shed light on the question as to why such a state has not been observed experimentally, its robustness is analyzed. On the one hand, we study the possible phases when the system is doped. Magnetic frustration favors several phases with magnetic and charge order that do not occur at half filling, including additional Weyl-semimetal states close to quarter filling. On the other hand, we search for density waves that break translational symmetry and destroy the Weyl-semimetal phase close to half filling. The uniform Weyl semimetal is found to be stable, which we attribute to the low density of states close to the Fermi energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا