No Arabic abstract
The aim of this paper is to prove some classification results for generic shrinking Ricci solitons. In particular, we show that every three dimensional generic shrinking Ricci soliton is given by quotients of either $mathds{S}^3$, $erretimesmathds{S}^2$ or $erre^3$, under some very weak conditions on the vector field $X$ generating the soliton structure. In doing so we introduce analytical tools that could be useful in other settings; for instance we prove that the Omori-Yau maximum principle holds for the $X$-Laplacian on every generic Ricci soliton, without any assumption on $X$.
We consider a geometric flow introduced by Gigli and Mantegazza which, in the case of smooth compact manifolds with smooth metrics, is tangen- tial to the Ricci flow almost-everywhere along geodesics. To study spaces with geometric singularities, we consider this flow in the context of smooth manifolds with rough metrics with sufficiently regular heat kernels. On an appropriate non- singular open region, we provide a family of metric tensors evolving in time and provide a regularity theory for this flow in terms of the regularity of the heat kernel. When the rough metric induces a metric measure space satisfying a Riemannian Curvature Dimension condition, we demonstrate that the distance induced by the flow is identical to the evolving distance metric defined by Gigli and Mantegazza on appropriate admissible points. Consequently, we demonstrate that a smooth compact manifold with a finite number of geometric conical singularities remains a smooth manifold with a smooth metric away from the cone points for all future times. Moreover, we show that the distance induced by the evolving metric tensor agrees with the flow of RCD(K, N) spaces defined by Gigli-Mantegazza.
By using fixed point argument we give a proof for the existence of singular rotationally symmetric steady and expanding gradient Ricci solitons in higher dimensions with metric $g=frac{da^2}{h(a^2)}+a^2g_{S^n}$ for some function $h$ where $g_{S^n}$ is the standard metric on the unit sphere $S^n$ in $mathbb{R}^n$ for any $nge 2$. More precisely for any $lambdage 0$ and $c_0>0$, we prove that there exist infinitely many solutions $hin C^2((0,infty);mathbb{R}^+)$ for the equation $2r^2h(r)h_{rr}(r)=(n-1)h(r)(h(r)-1)+rh_r(r)(rh_r(r)-lambda r-(n-1))$, $h(r)>0$, in $(0,infty)$ satisfying $underset{substack{rto 0}}{lim},r^{sqrt{n}-1}h(r)=c_0$ and prove the higher order asymptotic behaviour of the global singular solutions near the origin. We also find conditions for the existence of unique global singular solution of such equation in terms of its asymptotic behaviour near the origin.
In this paper we prove a compactness result for Ricci flows with bounded scalar curvature and entropy. It states that given any sequence of such Ricci flows, we can pass to a subsequence that converges to a metric space which is smooth away from a set of codimension $geq 4$. The result has two main consequences: First, it implies that singularities in Ricci flows with bounded scalar curvature have codimension $geq 4$ and, second, it establishes a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case. In the course of the proof, we will also establish the following results: $L^{p < 4}$ curvature bounds, integral bounds on the curvature radius, Gromov-Hausdorff closeness of time-slices, an $varepsilon$-regularity theorem for Ricci flows and an improved backwards pseudolocality theorem.
A Ricci soliton $(M^n,g,v,lambda)$ on a Riemannian manifold $(M^n,g)$ is said to have concurrent potential field if its potential field $v$ is a concurrent vector field. In the first part of this paper we completely classify Ricci solitons with concurrent potential fields. In the second part we derive a necessary and sufficient condition for a submanifold to be a Ricci soliton in a Riemannian manifold equipped with a concurrent vector field. In the last part, we classify shrinking Ricci solitons with $lambda=1$ on Euclidean hypersurfaces. Several applications of our results are also presented.
In this paper we introduce, in the Riemannian setting, the notion of conformal Ricci soliton, which includes as particular cases Einstein manifolds, conformal Einstein manifolds and (generic and gradient) Ricci solitons. We provide here some necessary integrability conditions for the existence of these structures that also recover, in the corresponding contexts, those already known in the literature for conformally Einstein manifolds and for gradient Ricci solitons. A crucial tool in our analysis is the construction of some appropriate and highly nontrivial $(0,3)$-tensors related to the geometric structures, that in the special case of gradient Ricci solitons become the celebrated tensor $D$ recently introduced by Cao and Chen. A significant part of our investigation, which has independent interest, is the derivation of a number of commutation rules for covariant derivatives (of functions and tensors) and of transformation laws of some geometric objects under a conformal change of the underlying metric.