Do you want to publish a course? Click here

Predictions for Microlensing Planetary Events from Core Accretion Theory

372   0   0.0 ( 0 )
 Added by Wei Zhu
 Publication date 2014
  fields Physics
and research's language is English
 Authors Wei Zhu




Ask ChatGPT about the research

We conduct the first microlensing simulation in the context of planet formation model. The planet population is taken from the Ida & Lin core accretion model for $0.3M_odot$ stars. With $6690$ microlensing events, we find for a simplified Korea Microlensing Telescopes Network (KMTNet) the fraction of planetary events is $2.9%$ , out of which $5.5%$ show multiple-planet signatures. The number of super-Earths, super-Neptunes and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 min sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be essential in extracting the full science potential of very high-magnification events. The uniformly high-cadence observations expected for KMTNet also result in $sim 55%$ of all detected planets being non-caustic-crossing, and more low-mass planets even down to Mars-mass being detected via planetary caustics. We also find that the distributions of orbital inclinations and planet mass ratios in multiple-planet events agree with the intrinsic distributions.



rate research

Read More

We present the analysis of four candidate short duration binary microlensing events from the 2006-2007 MOA Project short event analysis. These events were discovered as a byproduct of an analysis designed to find short timescale single lens events that may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which stellar host is only detected through binary microlensing effects. The mass ratio and separation are q = 4.9 +- 1.4 x 10^{-3} and s = 2.10 +- 0.05, respectively. A Bayesian analysis based on a standard Galactic model indicates that the planet, MOA-bin-1Lb, has a mass of m_p = 3.7 +- 2.1 M_{Jup}, and orbits a star of M_* = 0.75{+0.33 -0.41} M_solar at a semi-major axis of a = 8.3 {+4.5 -2.7} AU. This is one of the most massive and widest separation planets found by microlensing. The scarcity of such wide separation planets also has implications for interpretation of the isolated planetary mass objects found by this analysis. If we assume that we have been able to detect wide separation planets with a efficiency at least as high as that for isolated planets, then we can set limits on the distribution on planets in wide orbits. In particular, if the entire isolated planet sample found by Sumi et al. (2011) consists of planets bound in wide orbits around stars, we find that it is likely that the median orbital semi-major axis is > 30 AU.
We compare the planet-to-star mass-ratio distribution measured by gravitational microlensing to core accretion theory predictions from population synthesis models. The core accretion theorys runaway gas accretion process predicts a dearth of intermediate-mass giant planets that is not seen in the microlensing results. In particular, the models predict $sim10,times$ fewer planets at mass ratios of $10^{-4} leq q leq 4 times 10^{-4}$ than inferred from microlensing observations. This tension implies that gas giant formation may involve processes that have hitherto been overlooked by existing core accretion models or that the planet-forming environment varies considerably as a function of host-star mass. Variation from the usual assumptions for the protoplanetary disk viscosity and thickness could reduce this discrepancy, but such changes might conflict with microlensing results at larger or smaller mass ratios, or with other observations. The resolution of this discrepancy may have important implications for planetary habitability because it has been suggested that the runaway gas accretion process may have triggered the delivery of water to our inner solar system. So, an understanding of giant planet formation may help us to determine the occurrence rate of habitable planets.
We present the first short-duration candidate microlensing events from the Kepler K2 mission. From late April to early July 2016, Campaign 9 of K2 obtained high temporal cadence observations over a 3.7 square degree region of the Galactic bulge. Its primary objectives were to look for evidence of a free-floating planet (FFP) population using microlensing, and demonstrate the feasibility of space-based planetary microlensing surveys. Though Kepler K2 is far from optimal for microlensing, the recently developed MCPM photometric pipeline enables us to identify and model microlensing events. We describe our blind event-selection pipeline in detail and use it to recover 22 short-duration events with effective timescales of less than 10 days previously announced by the OGLE and KMTNet ground-based surveys. We also announce five new candidate events. One of these is a caustic-crossing binary event, consistent with a bound planet and modelled as such in a companion study. The other four have very short durations (effective timescales less than 0.1 days) typical of an Earth-mass FFP population. Whilst Kepler was not designed for crowded-field photometry, the K2C9 dataset clearly demonstrates the feasibility of conducting blind space-based microlensing surveys towards the Galactic bulge.
283 - A. Cassan , C. Ranc 2016
Interferometric observations of microlensing events have the potential to provide unique constraints on the physical properties of the lensing systems. In this work, we first present a formalism that closely combines interferometric and microlensing observable quantities, which lead us to define an original microlensing (u,v) plane. We run simulations of long-baseline interferometric observations and photometric light curves to decide which observational strategy is required to obtain a precise measurement on vector Einstein radius. We finally perform a detailed analysis of the expected number of targets in the light of new microlensing surveys (2011+) which currently deliver 2000 alerts/year. We find that a few events are already at reach of long baseline interferometers (CHARA, VLTI), and a rate of about 6 events/year is expected with a limiting magnitude of K~10. This number would increase by an order of magnitude by raising it to K~11. We thus expect that a new route for characterizing microlensing events will be opened by the upcoming generations of interferometers.
143 - Philippe Jetzer 2010
We present an analysis of the large set of microlensing events detected so far toward the Galactic center with the purpose of investigating whether some of the dark lenses are located in Galactic globular clusters. We find that in four cases some events might indeed be due to lenses located in the globular clusters themselves. We also give a rough estimate for the average lens mass of the events being highly aligned with Galactic globular cluster centers and find that, under reasonable assumptions, the deflectors could most probably be either brown dwarfs, M-stars or stellar remnants.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا