Do you want to publish a course? Click here

DIRHB -- a relativistic self-consistent mean-field framework for atomic nuclei

154   0   0.0 ( 0 )
 Added by Tamara Niksic
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The DIRHB package consists of three Fortran computer codes for the calculation of the ground-state properties of even-even atomic nuclei using the framework of relativistic self-consistent mean-field models. Each code corresponds to a particular choice of spatial symmetry: the DIRHBS, DIRHBZ and DIRHBT codes are used to calculate nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes, respectively. Reflection symmetry is assumed in all three cases. The latest relativistic nuclear energy density functionals are implemented in the codes, thus enabling efficient and accurate calculations over the entire nuclide chart.



rate research

Read More

$K^-$ atomic data are used to test several models of the $K^-$ nucleus interaction. The t($rho$)$rho$ optical potential, due to coupled channel models incorporating the $Lambda$(1405) dynamics, fails to reproduce these data. A standard relativistic mean field (RMF) potential, disregarding the $Lambda$(1405) dynamics at low densities, also fails. The only successful model is a hybrid of a theoretically motivated RMF approach in the nuclear interior and a completely phenomenological density dependent potential, which respects the low density theorem in the nuclear surface region. This best-fit $K^-$ optical potential is found to be strongly attractive, with a depth of 180 pm 20 MeV at the nuclear interior, in agreement with previous phenomenological analyses.
The structure and the energy spectrum of the $eta^{prime}$ mesonic nuclei are investigated in a relativistic mean field theory. One expects a substantial attraction for the $eta^{prime}$ meson in finite nuclei due to the partial restoration of chiral symmetry in the nuclear medium. Such a hadronic scale interaction for the $eta^{prime}$ mesonic nuclei may provide modification of the nuclear structure. The relativistic mean field theory is a self-contained model for finite nuclei which provides the saturation property within the model, and is good to investigate the structure change of the nucleus induced by the $eta^{prime}$ meson. Using the local density approximation for the mean fields, we solve the equations of motion for the nucleons and the $eta^{prime}$ meson self-consistently, and obtain the nuclear density distribution and the $eta^{prime}$ energy spectrum for the $eta^{prime}$ mesonic nuclei. We take $^{12}$C, $^{16}$O and $^{40}$Ca for the target nuclei. We find several bound states of the $eta^{prime}$ meson for these nuclei thanks to the attraction for $eta^{prime}$ in nuclei. We also find a sufficient change of the nuclear structure especially for the $1s$ bound state of $eta^{prime}$. This implies that the production of the $1s$ bound state in nuclear reaction may be suppressed.
133 - Bharat Kumar , B. K. Agrawal , 2017
New Relativistic mean field parameter set IOPB-I has been developed.
183 - B. Bally , B. Avez , M. Bender 2014
Beyond mean-field methods are very successful tools for the description of large-amplitude collective motion for even-even atomic nuclei. The state-of-the-art framework of these methods consists in a Generator Coordinate Method based on angular-momentum and particle-number projected triaxially deformed Hatree-Fock-Bogoliubov (HFB) states. The extension of this scheme to odd-mass nuclei is a long-standing challenge. We present for the first time such an extension, where the Generator Coordinate space is built from self-consistently blocked one-quasiparticle HFB states. One of the key points for this success is that the same Skyrme interaction is used for the mean-field and the pairing channels, thus avoiding problems related to the violation of the Pauli principle. An application to 25Mg illustrates the power of our method, as agreement with experiment is obtained for the spectrum, electromagnetic moments, and transition strengths, for both positive and negative parity states and without the necessity for effective charges or effective moments. Although the effective interaction still requires improvement, our study opens the way to systematically describe odd-A nuclei throughout the nuclear chart.
We analyze the localization properties of two-body correlations induced by pairing in the framework of relativistic mean field (RMF) models. The spatial properties of two-body correlations are studied for the pairing tensor in coordinate space and for the Cooper pair wave function. The calculations are performed both with Relativistic-Hatree-Bogoliubov (RHB) and RMF+Projected-BCS (PBCS) models and taking as examples the nuclei $^{66}$Ni, $^{124}$Sn and $^{200}$Pb. It is shown that the coherence length have the same pattern as in previous non-relativistic HFB calculations, i.e., it is maximum in the interior of the nucleus and drops to a minimum in the surface region. In the framework of RMF+PBCS we have also analysed, for the particular case of $^{120}$Sn, the dependence of the coherence length on the intensity of the pairing force. This analysis indicates that pairing is reducing the coherence length by about 25-30 $%$ compared to the RMF limit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا