Do you want to publish a course? Click here

On the Laplace transform of the Fr{e}chet distribution

542   0   0.0 ( 0 )
 Added by Katarzyna Gorska
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We calculate exactly the Laplace transform of the Fr{e}chet distribution in the form $gamma x^{-(1+gamma)} exp(-x^{-gamma})$, $gamma > 0$, $0 leq x < infty$, for arbitrary rational values of the shape parameter $gamma$, i.e. for $gamma = l/k$ with $l, k = 1,2, ldots$. The method employs the inverse Mellin transform. The closed form expressions are obtained in terms of Meijer G functions and their graphical illustrations are provided. A rescaled Fr{e}chet distribution serves as a kernel of Fr{e}chet integral transform. It turns out that the Fr{e}chet transform of one-sided L{e}vy law reproduces the Fr{e}chet distribution.



rate research

Read More

119 - Henning Wunderlich 2020
In this short note, we give a characterization of Fr{e}chet spaces via properties of their metric. This allows us to prove that the Hausdorff measure of noncompactness (MNC), defined over Fr{e}chet spaces, is indeed an MNC. As first applications, we lift well-known fixed-point theorems for contractive and condensing operators to the setting of Fr{e}chet spaces.
We establish an explicit expression for the conditional Laplace transform of the integrated Volterra Wishart process in terms of a certain resolvent of the covariance function. The core ingredient is the derivation of the conditional Laplace transform of general Gaussian processes in terms of Fredholms determinant and resolvent. Furthermore , we link the characteristic exponents to a system of non-standard infinite dimensional matrix Riccati equations. This leads to a second representation of the Laplace transform for a special case of convolution kernel. In practice, we show that both representations can be approximated by either closed form solutions of conventional Wishart distributions or finite dimensional matrix Riccati equations stemming from conventional linear-quadratic models. This allows fast pricing in a variety of highly flexible models, ranging from bond pricing in quadratic short rate models with rich autocorrelation structures, long range dependence and possible default risk, to pricing basket options with covariance risk in multivariate rough volatility models.
380 - John Pike , Haining Ren 2012
Using Steins method techniques, we develop a framework which allows one to bound the error terms arising from approximation by the Laplace distribution and apply it to the study of random sums of mean zero random variables. As a corollary, we deduce a Berry-Esseen type theorem for the convergence of certain geometric sums. Our results make use of a second order characterizing equation and a distributional transformation which is related to zero-biasing.
164 - T. Royen 2007
From a suitable integral representation of the Laplace transform of a positive semi-definite quadratic form of independent real random variables with not necessarily identical densities a univariate integral representation is derived for the cumulative distribution function of the sample variance of i.i.d. random variables with a gamma density, supplementing former formulas of the author. Furthermore, from the above Laplace transform Fourier series are obtained for the density and the distribution function of the sample variance of i.i.d. random variables with a uniform distribution. This distribution can be applied e.g. to a statistical test for a scale parameter.
Taylor series is a useful mathematical tool when describing and constructing a function. With the series representation, some properties of fractional calculus can be revealed clearly. This paper investigates two typical applications: Lebiniz rule and Laplace transform. It is analytically shown that the commonly used Leibniz rule cannot be applied for Caputo derivative. Similarly, the well-known Laplace transform of Riemann-Liouville derivative is doubtful for n-th continuously differentiable function. By the aid of this series representation, the exact formula of Caputo Leibniz rule and the explanation of Riemann-Liouville Laplace transform are presented. Finally, three illustrative examples are revisited to confirm the obtained results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا