Do you want to publish a course? Click here

Development of position-sensitive time-of-flight spectrometer for fission fragment research

152   0   0.0 ( 0 )
 Added by Charles Arnold
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEterminiation in fission Research (SPIDER) is a $2E-2v$ spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with $alpha$-particles from $^{229}$Th and its decay chain and $alpha$-particles and spontaneous fission fragments from $^{252}$Cf. Each detector module is comprised of a thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times on the order of 70 ns were measured with 200 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.



rate research

Read More

118 - K. Murray , J. Dilling , R. Gornea 2019
The search for neutrinoless double beta decay requires increasingly advanced methods of background reduction. A bold approach to solving this problem, in experiments using Xe-136, is to extract and identify the daughter Ba-136 ion produced by double beta decay. Tagging events in this manner allows for a virtually background-free verification of double beta decay signals. Various approaches are being pursued by the nEXO collaboration to achieve Ba-tagging. A Multi-Reflection Time-of-Flight Mass Spectrometer (MR TOF) has been designed and optimized as one of the ion-identification methods, where it will investigate the ion-extraction efficiency, as well as provide further identification of the Ba isotope. The envisioned mode of operation allows the MR TOF to achieve a quickly adjustable mass-range and resolution, with simulations suggesting that a mass-resolving power of 140,000 is within reach. This work will discuss the MR TOF design and the methods employed to simulate and optimize it.
The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of $^3$He detectors on an operational instrument. The demonstrator has an active area of 0.2 m$^2$. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the $^3$He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by $^3$He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.
125 - S. Lupone , S. Damoy , A. Husseen 2015
We report on the construction of a UHV compatible 40 mm active diameter detector based on micro channel plates and assembled directly on the feed-throughs of a DN63CF flange. It is based on the charge division technique and uses a standard two inch Si wafer as a collector. The front end electronic is placed directly on the air side of the flange allowing excellent immunity to noise and a very good timing signal with reduced ringing. The important aberrations are corrected empirically providing and absolute positioning accuracy of 500 $mu$m while a 150 $mu$m resolution is measured in the center.
A prototype of a position sensitive photo-detector with 5.6 x 5.6 cm2 detection area readout with 64 Hamamatsu MPPCs (S10931-100P) with 3 x 3 mm2 active area each has been built and tested. The photo-sensors are arranged in a 8 x 8 array with a quadratic mirror light guide on top. The module is currently readout by in-house developed preamplifier boards but employing existing ASIC chips optimized for SiPM readout is also planned. Such a device is one of the candidates to be used for photon detection in the PANDA DIRC detectors.
101 - D. Nagae , Y. Abe , S. Okada 2020
An electrostatic time-of-flight detector named E-MCP has been developed for quick diagnostics of circulating beam and timing measurement in mass spectrometry at the Rare-RI Ring in RIKEN. The E-MCP detector consists of a conversion foil, potential grids, and a microchannel plate. Secondary electrons are released from the surface of the foil when a heavy ion hits it. The electrons are accelerated and deflected by 90$^circ$ toward the microchannel plate by electrostatic potentials. A thin carbon foil and a thin aluminum-coated mylar foil were used as conversion foils. We obtained time resolutions of 69(1) ps and 43(1) ps (standard deviation) for a $^{84}$Kr beam at an energy of 170 MeV/u when using the carbon and the aluminum-coated mylar foils, respectively. A detection efficiency of approximately 90% was obtained for both foils. The E-MCP detector equipped with the carbon foil was installed inside the Rare-RI Ring to confirm particle circulation within a demonstration experiment on mass measurements of nuclei around $^{78}$Ge produced by in-flight fission of uranium beam at the RI Beam Factory in RIKEN. Periodic time signals from circulating ions were clearly observed. Revolution times for $^{78}$Ge, $^{77}$Ga, and $^{76}$Zn were obtained. The results confirmed successful circulation of the short-lived nuclei inside the Rare-RI Ring.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا