Do you want to publish a course? Click here

Quantum Teleportation through Noisy Channels with Multi-Qubit GHZ States

139   0   0.0 ( 0 )
 Added by Pouria Pedram
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for $n$-qubit GHZ states $nin{4,5,6}$ where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity we show that 3GHZ state is more robust than $n$GHZ state under most noisy channels. However, $n$GHZ state preserves same quantum information with respect to EPR and 3GHZ states where the noise is in $x$ direction in which the fidelity remains unchanged. We explicitly show that Jung ${it et, al.}$ conjecture [Phys. Rev. A ${bf 78}$, 012312 (2008)], namely, average fidelity with same-axis noisy channels are in general larger than average fidelity with different-axis noisy channels is not valid for 3GHZ and 4GHZ states.



rate research

Read More

We study the Kimble-Braunstein continuous-variable quantum teleportation with the quantum channel physically realized in the turbulent atmosphere. In this context, we examine the applicability of different strategies preserving the Gaussian entanglement [Bohmann et al., Phys. Rev. A 94, 010302(R) (2016)] for improving the fidelity of the coherent-state teleportation. First, we demonstrate that increasing the squeezing parameter characterizing the entangled state is restricted by its optimal value, which we derive for realistic experimentally-verified examples. Further, we consider the technique of adaptive correlations of losses and show its performance for channels with large squeezing parameters. Finally, we investigate the efficiencies of postselection strategies in dependence on the stochastic properties of the channel transmittance.
We consider realistic measurement systems, where measurements are accompanied by decoherence processes. The aim of this work is the construction of methods and algorithms for precise quantum measurements with fidelity close to the fundamental limit. In the present work the notions of ideal and non-ideal quantum measurements are strictly formalized. It is shown that non-ideal quantum measurements could be represented as a mixture of ideal measurements. Based on root approach the quantum state reconstruction method is developed. Informational accuracy theory of non-ideal quantum measurements is proposed. The monitoring of the amount of information about the quantum state parameters is examined, including the analysis of the information degradation under the noise influence. The study of achievable fidelity in non-ideal quantum measurements is performed. The results of simulation of fidelity characteristics of a wide class of quantum protocols based on polyhedrons geometry with high level of symmetry are presented. The impact of different decoherence mechanisms, including qubit amplitude and phase relaxation, bit-flip and phase-flip, is considered.
We employ the technique of weak measurement in order to enable preservation of teleportation fidelity for two-qubit noisy channels. We consider one or both qubits of a maximally entangled state to undergo amplitude damping, and show that the application of weak measurement and a subsequent reverse operation could lead to a fidelity greater than $2/3$ for any value of the decoherence parameter. The success probability of the protocol decreases with the strength of weak measurement, and is lower when both the qubits are affected by decoherence. Finally, our protocol is shown to work for the Werner state too.
In this work, a novel protocol is proposed for bidirectional controlled quantum teleportation (BCQT) in which a quantum channel is used with the eight-qubit entangled state. Using the protocol, two users can teleport an arbitrary entangled state and a pure two-qubit state (QBS) to each other simultaneously under the permission of a third party in the role of controller. This protocol is based on the controlled-not operation, appropriate single-qubit (SIQ) UOs and SIQ measurements in the Z and X-basis. Reduction of the predictability of the controllers qubit (QB) by the eavesdropper and also, an increasing degree of freedom of controller for controlling one of the users or both are other features of this protocol. Then, the proposed protocol is investigated in two typical noisy channels include the amplitude-damping noise (ADN) and the phase-damping noise (PDN). And finally, analysis of the protocol shows that it only depends on the amplitude of the initial state and the decoherence noisy rate (DR).
We study quantum correlation of Greenberger-Horne-Zeilinger (GHZ) and W states under various noisy channels using measurement-induced disturbance approach and its optimized version. Although these inequivalent maximal entangled states represent the same quantum correlation in the absence of noise, it is shown that the W state is more robust than the GHZ state through most noisy channels. Also, using measurement-induced disturbance measure, we obtain the analytical relations for the time evolution of quantum correlations in terms of the noisy parameter $kappa$ and remove its overestimating quantum correlations upon implementing the ameliorated measurement-induced disturbance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا