Do you want to publish a course? Click here

Time variation of particle and anti-particle asymmetry in an expanding universe

121   0   0.0 ( 0 )
 Added by Takuya Morozumi
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Particle number violating interactions wash out the primordial asymmetry of particle number density generated by some interaction satisfying Sakharov conditions for baryogenesis. In this paper, we study how the primordial asymmetry evolves in time under the presence of particle number violating interactions and in the environment of expanding universe. We introduce a complex scalar model with particle number violating mass terms and calculate the time evolution of the particle number density with non-equilibrium quantum field theory. We show how the time evolution of the number density depends on parameters, including the chemical potential related with the particle number, temperature, size of the particle number violating mass terms, and the expansion rate of the universe. Depending upon whether the chemical potential is larger or smaller than the rest mass of the scalar particle, behaviors of the number density are very different to each other. When the chemical potential is smaller than the mass, the interference among the contribution of oscillators with various momenta reduces the number density in addition to the dilution due to the expansion of universe. In opposite case, the oscillation of the particle number density lasts for a long time and the cancellation due to the interference does not occur.



rate research

Read More

We introduce a model which may generate particle number asymmetry in an expanding Universe. The model includes CP violating and particle number violating interactions. The model consists of a real scalar field and a complex scalar field. Starting with an initial condition specified by a density matrix, we show how the asymmetry is created through the interaction and how it evolves at later time. We compute the asymmetry using non-equilibrium quantum field theory and as a first test of the model, we study how the asymmetry evolves in the flat limit.
In this article we investigate the effects of single derivative mixing in massive bosonic fields. In the regime of large mixing, we show that this leads to striking changes of the field dynamics, delaying the onset of classical oscillations and decreasing, or even eliminating, the friction due to Hubble expansion. We highlight this phenomenon with a few examples. In the first example, we show how an axion like particle can have its number abundance parametrically enhanced. In the second example, we demonstrate that the QCD axion can have its number abundance enhanced allowing for misalignment driven axion dark matter all the way down to $f_a$ of order astrophysical bounds. In the third example, we show that the delayed oscillation of the scalar field can also sustain a period of inflation. In the last example, we present a situation where an oscillating scalar field is completely frictionless and does not dilute away in time.
58 - T. Inui , T. Ichihara , Y. Mimura 1993
Cosmological baryon asymmetry B is studied in supersymmetric standard models, assuming the electroweak reprocessing of B and L. Only when the soft supersymmetry breaking is taken into account, B is proportional to the primordial B-L in the supersymmetric standard models. The ratio $B/(B-L)$ is found to be about one percent less than the nonsupersymmetric case. Even if the primordial B-L vanishes, scalar-leptons can be more efficient than leptons to generate B provided that mixing angles $th$ among scalar leptons satisfy $|th| < 10^{-8} (T/{GeV})^{1/2}$.
We show that entanglement can be used to detect spacetime curvature. Quantum fields in the Minkowski vacuum are entangled with respect to local field modes. This entanglement can be swapped to spatially separated quantum systems using standard local couplings. A single, inertial field detector in the exponentially expanding (de Sitter) vacuum responds as if it were bathed in thermal radiation in a Minkowski universe. We show that using two inertial detectors, interactions with the field in the thermal case will entangle certain detector pairs that would not become entangled in the corresponding de Sitter case. The two universes can thus be distinguished by their entangling power.
We investigate analytically and numerically the orbits of spinning particles around black holes in the post Newtonian limit and in the presence of cosmic expansion. We show that orbits that are circular in the absence of spin, get deformed when the orbiting particle has spin. We show that the origin of this deformation is twofold: a. the background expansion rate which induces an attractive (repulsive) interaction due to the cosmic background fluid when the expansion is decelerating (accelerating) and b. a spin-orbit interaction which can be attractive or repulsive depending on the relative orientation between spin and orbital angular momentum and on the expansion rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا