Comment on Breaking the theoretical scaling limit for predicting quasi-particle energies: The stochastic GW approach, by Daniel Neuhauser et al., arXiv:1402.5035v1
We show that the recently-introduced formalism by Neuhauser et al. for the calculation of the quasi-particle energies of electronic systems within the framework of the GW approximation of the self-energy operator, named the `stochastic GW approach and empirically shown to have a linear-scaling arithmetic complexity for increasing number of electrons, suffers from two fundamental shortcomings that cannot be overcome while maintaining the present empirical linear-scaling property of the approach.
In a comment on arXiv:1006.5070v1, Drechsler et al. present new band-structure calculations suggesting that the frustrated ferromagnetic spin-1/2 chain LiCuVO4 should be described by a strong rather than weak ferromagnetic nearest-neighbor interaction, in contradiction with their previous calculations. In our reply, we show that their new results are at odds with the observed magnetic structure, that their analysis of the static susceptibility neglects important contributions, and that their criticism of the spin-wave analysis of the bound-state dispersion is unfounded. We further show that their new exact diagonalization results reinforce our conclusion on the existence of a four-spinon continuum in LiCuVO4, see Enderle et al., Phys. Rev. Lett. 104 (2010) 237207.
In a comment on arXiv:1006.5070v2, Drechsler et al. claim that the frustrated ferromagnetic spin-1/2 chain LiCuVO4 should be described by a strong rather than weak ferromagnetic nearest-neighbor interaction, in contradiction with their previous work. Their comment is based on DMRG and ED calculations of the magnetization curve and the magnetic excitations. We show that their parameters are at odds with the magnetic susceptibility and the magnetic excitation spectrum, once intensities are taken into account, and that the magnetization curve cannot discriminate between largely different parameter sets within experimental uncertainties. We further show that their new exact diagonalization results support the validity of the RPA-approach, and strongly reinforce our conclusion on the existence of a four-spinon continuum in LiCuVO4, see Enderle et al., Phys. Rev. Lett. 104 (2010) 237207.
The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment.
Inspired by Grimmes simplified Tamm-Dancoff density functional theory approach [S. Grimme, J. Chem. Phys. textbf{138}, 244104 (2013)], we describe a simplified approach to excited state calculations within the GW approximation to the self-energy and the Bethe-Salpeter equation (BSE), which we call sGW/sBSE. The primary simplification to the electron repulsion integrals yields the same structure as with tensor hypercontraction, such that our method has a storage requirement that grows quadratically with system size and computational timing that grows cubically with system size. The performance of sGW is tested on the ionization potential of the molecules in the GW100 test set, for which it differs from textit{ab intio} GW calculations by only 0.2 eV. The performance of sBSE (based on sGW input) is tested on the excitation energies of molecules in the Thiel set, for which it differs from textit{ab intio} GW/BSE calculations by about 0.5 eV. As examples of the systems that can be routinely studied with sGW/sBSE, we calculate the band gap and excitation energy of hydrogen-passivated silicon nanocrystals with up to 2650 electrons in 4678 spatial orbitals and the absorption spectra of two large organic dye molecules with hundreds of atoms.
Behnam Farid
.
(2014)
.
"Comment on Breaking the theoretical scaling limit for predicting quasi-particle energies: The stochastic GW approach, by Daniel Neuhauser et al., arXiv:1402.5035v1"
.
Behnam Farid
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا