The spectral theorem for unitary operators based on the $S$-spectrum


Abstract in English

The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [31], [32], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not specified which notion of spectrum underlies the theorem. In this paper we prove the quaternionic spectral theorem for unitary operators using the $S$-spectrum. In the case of quaternionic matrices, the $S$-spectrum coincides with the right-spectrum and so our result recovers the well known theorem for matrices. The notion of $S$-spectrum is relatively new, see [17], and has been used for quaternionic linear operators, as well as for $n$-tuples of not necessarily commuting operators, to define and study a noncommutati

Download