Do you want to publish a course? Click here

Exploring of point-contact spectra of Ba1-xNaxFe2As2 in the normal and superconducting state

128   0   0.0 ( 0 )
 Added by Yu. G. Naidyuk
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present study of derivatives of current-voltage I(V) characteristics of point-contacts (PCs) based on Ba{1-x}Na{x}Fe2As2 (x=0.25) in the normal and superconducting state. The detailed analysis of dV/dI(V) data (also given in Appendix A) shows that the thermal regime, when temperature increases with a voltage at a rate of about 1.8 K/mV, is realized in the investigated PCs at least at high biases V above the superconducting (SC) gap Delta. In this case, specific resistivity rho (T) in PC core is responsible for a peculiar dV/dI(V) behavior, while a pronounced asymmetry of dV/dI(V) is caused by large value of thermopower in this material. A reproducible zero-bias minima detected on dV/dI(V) at low biases in the range pm(6--9)mV well below the SC critical temperature T_c could be connected with the manifestation of the SC gap Delta. Evaluation of these Andreev-reflection-like structures on dV/dI(V) points out to the preferred value of 2Delta/kT_c approx 6. The expected second gap features on dV/dI(V) are hard to resolve unambiguously, likely due to impurity scattering, spatial inhomogeneity and transition to the mentioned thermal regime as the bias further increases. Suggestions are made how to separate spectroscopic features in dV/dI(V) from those caused by the thermal regime.



rate research

Read More

We study the interplay of magnetic and superconducting order in single crystalline hole doped Ba1-xNaxFe2As2 using muon spin relaxation. We find microscopic coexistence of magnetic order and superconductivity. In a strongly underdoped specimen the two forms of order coexist without any measurable reduction of the ordered magnetic moment by superconductivity, while in a nearly optimally doped sample the ordered magnetic moment is strongly suppressed below the superconducting transition temperature. This coupling can be well described within the framework of an effective two-band model incorporating inter- and intra-band interactions. In optimally doped Ba1-xNaxFe2As2 we observe no traces of static or dynamic magnetism and the temperature dependence of the superfluid density is consistent with two s-wave gaps without nodes.
Point-contact (PC) spectroscopy measurements on antiferromagnetic (AF) (T_N=5.2K) HoNi2B2C single crystals in the normal and two different superconducting (SC) states (T_c=8.5K and $T_c^*=5.6K) are reported. The PC study of the electron-boson(phonon) interaction (EB(P)I) spectral function reveals pronounced phonon maxima at 16, 22 and 34meV. For the first time the high energy maxima at about 50meV and 100meV are resolved. Additionally, an admixture of a crystalline-electric-field (CEF) excitations with a maximum near 10meV and a `magnetic` peak near 3meV are observed. The contribution of the 10-meV peak in PC EPI constant lambda_PC is evaluated as 20-30%, while contribution of the high energy modes at 50 and 100meV amounts about 10% for each maxima, so the superconductivity might be affected by CEF excitations. The SC gap in HoNi2B2C exhibits a standard single-band BCS-like dependence, but vanishes at $T_c^*=5.6K<T_c, with 2Delta/kT_c^*=3.9. The strong coupling Eliashberg analysis of the low-temperature SC phase with T_c^*=5.6K =T_N, coexisting with the commensurate AF structure, suggests a sizable value of the EPI constant lambda_s=0.93. We also provide strong support for the recently proposed by us Fermi surface (FS) separation scenario for the coexistence of magnetism and superconductivity in magnetic borocarbides, namely, that the superconductivity in the commensurate AF phase survives at a special (nearly isotropic) FS sheet without an admixture of Ho 5d states. Above T_c^* the SC features in the PC characteristics are strongly suppressed pointing to a specific weakened SC state between T_c* and T_c.
We use point contact spectroscopy to probe the superconducting and normal state properties of the iron-based superconductor $rm{NaFe_{1-textit{x}}Co_{textit{x}}As}$ with $rm{textit{x} = 0, 0.02, 0.06}$. Andreev spectra corresponding to multiple superconducting gaps are detected in the superconducting phase. For $rm{textit{x} = 0.02}$, a broad conductance enhancement around zero bias voltage is detected in both the normal and the superconducting phase. Such a feature is not present in the $rm{textit{x} = 0.06}$ samples. We suspect that this enhancement is caused by orbital fluctuations, as previously detected in underdoped $rm{Ba(Fe_{1-textit{x}}Co_textit{x})_2As_2}$ (Phys. Rev. B 85, 214515 (2012)). Occasionally, the superconducting phase shows a distinct asymmetric conductance feature instead of Andreev reflection. We discuss the possible origins of this feature. NaFeAs (the parent compound) grown by two different techniques is probed. Melt-grown NaFeAs shows a normal state conductance enhancement. On the other hand, at low temperatures, flux-grown NaFeAs shows a sharp dip in the conductance at zero bias voltage. The compounds are very reactive in air and the different spectra are likely a reflection of their different oxidation and purity levels.
In strong-coupling superconductors with a short electron mean free path the self-energy effects in the superconducting order parameter play a major role in the phonon manifestation of the point-contact spectra at the above-gap energies. We derive asymptotic expressions of the phonon structure in MgB$%_{2}$ in the case $eVggDelta $ for tunnel, ballistic, and diffusive point-contacts and show that these expressions not only qualitatively, but also semi-quantitatively correspond to the measurements of the phonon structure in the point-contact spectra for the $pi$-band of MgB$_{2}$ c-axis oriented thin films.
122 - Xin Lu , W. K. Park , H. Q. Yuan 2009
Point-contact Andreev reflection spectroscopy (PCARS) is applied to investigate the gap structure in iron pnictide single crystal superconductors of the AFe_2As_2 (A=Ba, Sr) family (Fe-122). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba_{0.6}K_{0.4})Fe_2As_2 and Ba(Fe_{0.9}Co_{0.1})_2As_2, and the other with a V^{2/3} background conductance universally observed extending even up to 100 meV for Sr_{0.6}Na_{0.4}Fe_2As_2 and Sr(Fe_{0.9}Co_{0.1})_2As_2. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe_2As_2. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba_{0.6}K_{0.4}Fe_2As_2, double peaks due to Andreev reflection with strongly-sloping background are frequently observed for point-contacts on freshly-cleaved c-axis surfaces. If normalized by a background baseline and analyzed by the Blonder-Tinkham-Klapwijk model, the data show a gap size ~3.0-4.0 meV with 2Delta_0/k_BT_c ~ 2.0-2.6, consistent with the smaller gap size reported in the LnFeAsO family (Fe-1111). For the Ba(Fe_{0.9}Co_{0.1})_2As_2, G(V) curves typically display a zero-bias conductance peak.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا