Do you want to publish a course? Click here

Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

107   0   0.0 ( 0 )
 Added by Mayur Bubna
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.



rate research

Read More

The ATLAS experiment at the LHC will replace its current inner tracker system for the HL-LHC era. 3D silicon pixel sensors are being considered as radiation-hard candidates for the innermost layers of the new fully silicon-based tracking detector. 3D sensors with a small pixel size of $mathrm{50 times 50~mu m^{2}}$ and $mathrm{25 times 100~mu m^{2}}$ compatible with the first prototype ASIC for the HL-LHC, the RD53A chip, have been studied in beam tests after uniform irradiation to $mathrm{5 times 10^{15}~n_{eq}/cm^{2}}$. An operation voltage of only 50 V is needed to achieve a 97% hit efficiency after this fluence.
The tracking system of the CMS experiment, currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland), will include a silicon pixel detector providing three spacial measurements in its final configuration for tracks produced in high energy pp collisions. In this paper we present the results of test beam measurements performed at CERN on irradiated silicon pixel sensors. Lorentz angle and charge collection efficiency were measured for two sensor designs and at various bias voltages.
468 - J. Lange , S. Grinstein , M. Manna 2017
A new generation of 3D silicon pixel detectors with a small pixel size of 50$times$50 and 25$times$100 $mu$m$^{2}$ is being developed for the HL-LHC tracker upgrades. The radiation hardness of such detectors was studied in beam tests after irradiation to HL-LHC fluences up to $1.4times10^{16}$ n$_{mathrm{eq}}$/cm$^2$. At this fluence, an operation voltage of only 100 V is needed to achieve 97% hit efficiency, with a power dissipation of 13 mW/cm$^2$ at -25$^{circ}$C, considerably lower than for previous 3D sensor generations and planar sensors.
132 - T. Rohe , A. Bean , W. Erdmann 2010
Pixel detectors are used in the innermost part of the multi purpose experiments at LHC and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of all detector components has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade, the fluence will be much higher and it is not yet clear how long the present pixel modules will stay operative in such a harsh environment. The aim of this study was to establish such a limit as a benchmark for other possible detector concepts considered for the upgrade. As the sensors and the readout chip are the parts most sensitive to radiation damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to 6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq. After irradiation the response of the system to beta particles from a Sr-90 source was measured to characterise the charge collection efficiency of the sensor. Radiation induced changes in the readout chip were also measured. The results show that the present pixel modules can be expected to be still operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq still see the beta particles. However, further tests are needed to confirm whether a stable operation with high particle detection efficiency is possible after such a high fluence.
105 - Marco Bomben 2017
To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit-efficiency also at the detector edge, even in presence of guard rings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا