Do you want to publish a course? Click here

Giant Sparks at Cosmological Distances?

387   0   0.0 ( 0 )
 Added by James D. Neill
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Millisecond duration bright radio pulses at 1.4-GHz with high dispersion measures (DM) were reported by Lorimer et al., Keane et al., and Thornton et al. Their all-sky rate is $approx 10^4$/day above $sim$1 Jy. Related events are Perytons -- similar pulsed, dispersed sources, but most certainly local. Suggested models of fast radio bursts (FRBs) can originate in the Earths atmosphere, in stellar coronae, in other galaxies, and even at cosmological distances. Using physically motivated assumptions combined with observed properties, we explore these models. In our analysis, we focus on the Lorimer event: a 30 Jy, 5-ms duration burst with DM$=$ 375 cm$^{-3}$ pc, exhibiting a steep frequency-dependent pulse width (the {it Sparker}). To be complete, we drop the assumption that high DMs are produced by plasma propagation and assume that the source produces pulses with frequency-dependent arrival time (chirped signals). Within this framework we explore a scenario in which Perytons, the {it Sparker}, and the FRBs are all atmospheric phenomenon occurring at different heights. This model is {it ad hoc} in that we cannot explain why Perytons at higher altitudes show greater DMs or exhibit narrower pulses. Nonetheless, we argue the {it Sparker} may be a Peryton. We end with two remarks. First, the detection of a single FRB by an interferometer with a kilometer (or longer) baseline will prove that FRBs are of extra-terrestrial origin. Second, we urge astronomers to pursue observations and understanding of Perytons since they form (at least) a formidable foreground for the FRBs.



rate research

Read More

Impulsive radio bursts that are detectable across cosmological distances constitute extremely powerful probes of the ionized Inter-Galactic Medium (IGM), intergalactic magnetic fields, and the properties of space-time itself. Their dispersion measures (DMs) will enable us to detect the missing baryons in the low-redshift Universe and make the first measurements of the mean galaxy halo profile, a key parameter in models of galaxy formation and feedback. Impulsive bursts can be used as cosmic rulers at redshifts exceeding 2, and constrain the dark energy equation-of-state parameter, $w(z)$ at redshifts beyond those readily accessible by Type Ia SNe. Both of these goals are realisable with a sample of $sim 10^4$ fast radio bursts (FRBs) whose positions are localized to within one arcsecond, sufficient to obtain host galaxy redshifts via optical follow-up. It is also hypothesised that gravitational wave events may emit coherent emission at frequencies probed by SKA1-LOW, and the localization of such events at cosmological distances would enable their use as cosmological standard sirens. To perform this science, such bursts must be localized to their specific host galaxies so that their redshifts may be obtained and compared against their dispersion measures, rotation measures, and scattering properties. The SKA can achieve this with a design that has a wide field-of-view, a substantial fraction of its collecting area in a compact configuration (80% within a 3,km radius), and a capacity to attach high-time-resolution instrumentation to its signal path.
PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ~20 Mpc. Combined with the PHANGS-ALMA, PHANGS-MUSE surveys and other multiwavelength data, the dataset will provide an unprecedented look into the connections between young stars, HII regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g., brightness to luminosity, angular to physical sizes of molecular clouds, star clusters and associations). PHANGS-HST has obtained parallel ACS imaging of the galaxy halos in the F606W and F814W bands. Where possible, we use these parallel fields to derive tip of the red giant branch (TRGB) distances to these galaxies. In this paper, we present TRGB distances for 11 galaxies from ~4 to ~15 Mpc, based on the first year of PHANGS-HST observations. Five of these represent the first published TRGB distance measurements (IC 5332, NGC 2835, NGC 4298, NGC 4321, and NGC 4328), and eight of which are the best available distances to these targets. We also provide a compilation of distances for the 118 galaxies in the full PHANGS sample, which have been adopted for the first PHANGS-ALMA public data release.
Through high-precision radio timing observations, we show that five recycled pulsars in the direction of the Galactic Centre (GC) have anomalous spin period time derivative ($dot P$) measurements -- PSRs J1748$-$3009, J1753$-$2819, J1757$-$2745, and J1804$-$2858 show negative values of $dot P$ and PSR J1801$-$3210 is found to have an exceptionally small value of $dot P$. We attribute these observed $dot P$ measurements to acceleration of these pulsars along their lines-of-sight (LOSs) due to the Galactic gravitational field. Using models of the Galactic mass distribution and pulsar velocities, we constrain the distances to these pulsars, placing them on the far-side of the Galaxy, providing the first accurate distance measurements to pulsars located in this region and allowing us to consider the electron density along these LOSs. We find the new electron density model YMW16 to be more consistent with these observations than the previous model NE2001. The LOS dynamics further constrain the model-dependent intrinsic $dot P$ values for these pulsars and they are consistent with measurements for other known pulsars. In the future, the independent distance measurements to these and other pulsars near the GC would allow us to constrain the Galactic gravitational potential more accurately.
Context. Some circumstellar-interacting (CSI) supernovae (SNe) are produced by the explosions of massive stars that have lost mass shortly before the SN explosion. There is evidence that the precursors of some SNe IIn were luminous blue variable (LBV) stars. For a small number of CSI SNe, outbursts have been observed before the SN explosion. Eruptive events of massive stars are named as SN impostors (SN IMs) and whether they herald a forthcoming SN or not is still unclear. The large variety of observational properties of CSI SNe suggests the existence of other progenitors, such as red supergiant (RSG) stars with superwinds. Furthermore, the role of metallicity in the mass loss of CSI SN progenitors is still largely unexplored. Aims. Our goal is to gain insight on the nature of the progenitor stars of CSI SNe by studying their environments, in particular the metallicity at their locations. Methods. We obtain metallicity measurements at the location of 60 transients (including SNe IIn, SNe Ibn, and SN IMs), via emission-line diagnostic on optical spectra obtained at the Nordic Optical Telescope and through public archives. Metallicity values from the literature complement our sample. We compare the metallicity distributions among the different CSI SN subtypes and to those of other core-collapse SN types. We also search for possible correlations between metallicity and CSI SN observational properties. Results. We find that SN IMs tend to occur in environments with lower metallicity than those of SNe IIn. Among SNe IIn, SN IIn-L(1998S-like) SNe show higher metallicities, similar to those of SNe IIL/P, whereas long-lasting SNe IIn (1988Z-like) show lower metallicities, similar to those of SN IMs. The metallicity distribution of SNe IIn can be reproduced by combining the metallicity distributions of SN IMs (that may be produced by major outbursts of massive stars like LBVs) and SNe IIP (produced by RSGs). The same applies to the distributions of the Normalized Cumulative Rank (NCR) values, which quantifies the SN association to H II regions. For SNe IIn, we find larger mass-loss rates and higher CSM velocities at higher metallicities. The luminosity increment in the optical bands during SN IM outbursts tend to be larger at higher metallicity, whereas the SN IM quiescent optical luminosities tend to be lower. Conclusions. The difference in metallicity between SNe IIn and SN IMs suggests that LBVs are only one of the progenitor channels for SNe IIn, with 1988Z-like and 1998S-like SNe possibly arising from LBVs and RSGs, respectively. Finally, even though linedriven winds likely do not primarily drive the late mass-loss of CSI SN progenitors, metallicity has some impact on the observational properties of these transients. Key words. supernovae: general - stars: evolution - galaxies: abundances
We present an analysis technique that uses the timing information of Cherenkov images from extensive air showers (EAS). Our emphasis is on distant, or large core distance gamma-ray induced showers at multi-TeV energies. Specifically, combining pixel timing information with an improved direction reconstruction algorithm, leads to improvements in angular and core resolution as large as ~40% and ~30%, respectively, when compared with the same algorithm without the use of timing. Above 10 TeV, this results in an angular resolution approaching 0.05 degrees, together with a core resolution better than ~15 m. The off-axis post-cut gamma-ray acceptance is energy dependent and its full width at half maximum ranges from 4 degrees to 8 degrees. For shower directions that are up to ~6 degrees off-axis, the angular resolution achieved by using timing information is comparable, around 100 TeV, to the on-axis angular resolution. The telescope specifications and layout we describe here are geared towards energies above 10 TeV. However, the methods can in principle be applied to other energies, given suitable telescope parameters. The 5-telescope cell investigated in this study could initially pave the way for a larger array of sparsely spaced telescopes in an effort to push the collection area to >10 km2. These results highlight the potential of a `sparse array approach in effectively opening up the energy range above 10 TeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا