Do you want to publish a course? Click here

Surface atomic diffusion processes observed at milliseconds time resolution using environmental TEM

151   0   0.0 ( 0 )
 Added by Jian-Min Zuo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Significant progress has been made in spatial resolution using environmental transmission electron microscopes (ETEM), which now enables atomic resolution visualization of structural transformation under variable temperature and gas environments close to materials real operational conditions. Structural transformations are observed by recording images or diffraction patterns at various time intervals using a video camera or by taking snap shots using electron pulses. While time resolution at 15 ns has been reported using pulsed electron beams, the time interval that can be recorded by this technique is currently very limited. For longer recording, however, time resolution inside ETEM has been limited by electron cameras to ~1/30 seconds for a long time. Using the recently developed direct electron detection technology, we have significantly improved the time resolution of ETEM to 2.5 ms (milliseconds) for full frame or 0.625 ms for 0.25 frames.

rate research

Read More

Nucleation plays a critical role in many physical and biological phenomena ranging from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases. However, nucleation is a challenging process to study in experiments especially in the early stage when several atoms/molecules start to form a new phase from its parent phase. Here, we advance atomic electron tomography to study early stage nucleation at 4D atomic resolution. Using FePt nanoparticles as a model system, we reveal that early stage nuclei are irregularly shaped, each has a core of one to few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations differ from classical nucleation theory (CNT) and to explain them we propose the order parameter gradient (OPG) model. We show the OPG model generalizes CNT and energetically favours diffuse interfaces for small nuclei and sharp interfaces for large nuclei. We further corroborate this model using molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid-solid phase transitions of Pt. We anticipate that the OPG model is applicable to different nucleation processes and our experimental method opens the door to study the structure and dynamics of materials with 4D atomic resolution.
107 - Dan Zhou 2014
We studied ZrO2-La2/3Sr1/3MnO3 pillar matrix thin films which were found to show anomalous magnetic and electron transport properties controlled by the amount of ZrO2. With the application of an aberration corrected transmission electron microscope, structure and chemical information of the system, especially of the pillar matrix interface were revealed at atomic resolution. Minor amounts of Zr were found to occupy Mn positions within the matrix and its solubility within the matrix was found to be less than 6 mol%. Moreover, the Zr concentration reached minimum concentration at the pillar matrix interface accompanied by oxygen deficiency. La and Mn diffusion into the pillar was observed along with a change of the Mn valence state. La and Mn positions inside ZrO2 pillars were also revealed at atomic resolution. These results provide detailed information for future studies of macroscopic properties of these materials.
486 - Yu-Hao Deng 2020
High-resolution TEM (HRTEM) is a powerful tool for structure characterization. However, methylammonium lead iodide (MAPbI3) perovskite is highly sensitive to electron beams and easily decompose into lead iodide (PbI2). Universal misidentifications that PbI2 is incorrectly labeled as perovskite are widely exist in HRTEM characterization, which would negatively affect the development of perovskite research field. Here misidentifications in MAPbI3 perovskite calibration are summarized, classified and corrected based on corresponding electron diffraction (ED) simulations. Corresponding crystallographic parameters of intrinsic tetragonal MAPbI3 and the confusable hexagonal PbI2 are also presented clearly. Finally, the method of proper phase identification and some ways to control the radiation damage in HRTEM are provided. This work paves the way to avoid misleadings in HRTEM characterization of perovskite and other electron beam-sensitive materials in the future.
74 - W.A. Hofer , A.J. Fisher 2002
We propose a method to determine the direction of surface magnetization and local magnetic moments on the atomic scale. The method comprises high resolution scanning tunneling microscope experiments in conjunction with first principles simulations of the tunneling current. The potential of the method is demonstrated on a model system, antiferromagnetic Mn overlayers on W(110). We expect that it will ultimately allow to study the detailed changes of magnetic surface structures in the vicinity of dopants or impurities.
The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO$_2$) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO$_2$, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO$_2$ may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا