We report on the effect of agglomeration forced by strong electric field in fine particles of nearly ferroelectric YBa2Cu3O7-d superconductor. It turns out that the particles from agglomerates exhibit different morphology than the rest of powder that attaches to high-voltage electrodes. Study by means of electron paramagnetic resonance revealed in the powder attached to electrodes a narrow spectrum superimposed on Cu2+ anisotropic spectrum common for YBa2Cu3O7-d superconductors. We assume that this narrow spectrum originates from nanopolar regions generated by strong electric discharges taking place during the experiment. Consequently, the effect of agglomeration can be explained in terms of electrostatic interactions between the particles containing nanopolar regions with strong electric dipolar moments.
The microscopic doping mechanism behind the superconductor-to-insulator transition of a thin film of YBa2Cu3O7 was recently identified as due to the migration of O atoms from the CuO chains of the film. Here we employ density-functional theory calculations to study the evolution of the electronic structure of a slab of YBa2 Cu3 O7 in presence of oxygen vacancies under the influence of an external electric field. We find that under massive electric fields isolated O atoms are pulled out of the surface consisting of CuO chains. As vacancies accumulate at the surface, a configuration with vacancies located in the chains inside the slab becomes energetically preferred thus providing a driving force for O migration towards the surface. Regardless of the defect configuration studied, the electric field is always fully screened near the surface thus negligibly affecting diffusion barriers across the film.
Oxygen NMR is used to probe the local influence of nonmagnetic Zn and magnetic Ni impurities in the superconducting state of optimally doped high Tc YBa2Cu3O7. Zn and Ni induce a staggered paramagnetic polarization, similar to that evidenced above Tc, with a typical extension xi=3 cell units for Zn and xi>=3 for Ni. In addition, Zn is observed to induce a local density of states near the Fermi Energy in its neighbourhood, which also decays over about 3 cell units. Its magnitude decreases sharply with increasing temperature. This allows direct comparison with the STM observations done in BiSCO.
Low energy electronic structure of optimally doped YBa2Cu3O7-d is investigated using laser-excited angle-resolved photoemission spectroscopy. The surface state and the CuO chain band that usually overlap the CuO2 plane derived bands are not detected, thus enabling a clear observation of the bulk superconducting state. The observed bilayer splitting of the Fermi surface is ~0.08 angstrom^{-1} along the (0,0)-(pi,pi) direction, significantly larger than Bi2Sr2CaCu2O8+d. The kink structure of the band dispersion reflecting the renormalization effect at ~60 meV shows up similarly as in other hole-doped cuprates. The momentum-dependence of the superconducting gap shows d_{x^2-y^2}-wave like amplitude, but exhibits a nonzero minimum of ~12 meV along the (0,0)-(pi,pi) direction. Possible origins of such an unexpected nodeless gap behavior are discussed.
The vortex lattice (VL) in the high-kappa superconductor YBa2Cu3O7, at 2 K and with the magnetic field parallel to the crystal c-axis, undergoes a sequence of transitions between different structures as a function of applied magnetic field. However, from structural studies alone, it is not possible to determine precisely the system anisotropy that governs the transitions between different structures. To address this question, here we report new small-angle neutron scattering measurements of both the VL structure at higher temperatures, and the field- and temperature-dependence of the VL form factor. Our measurements demonstrate how the influence of anisotropy on the VL, which in theory can be parameterized as nonlocal corrections, becomes progressively important with increasing magnetic field, and suppressed by increasing the temperature towards Tc. The data indicate that nonlocality due to different anisotropies play important roles in determining the VL properties.
We identify a scalable, practical route to fabricating a superconducting diode. The device relies for its function on the barrier to flux vortex entry being reduced at the substrate interface of a superconducting pinning enhanced YBa2Cu3O7-d nano-composite film. We show that these composite systems provide a practical route to fabricating a useful superconducting diode and demonstrate the rectification of an alternating current.