Do you want to publish a course? Click here

The XMM-Newton spectral-fit database

133   0   0.0 ( 0 )
 Added by Amalia Corral
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The XMM-Newton spectral-fit database is an ongoing ESA funded project aimed to construct a catalogue of spectral-fitting results for all the sources within the XMM-Newton serendipitous source catalogue for which spectral data products have been pipeline-extracted (~ 120,000 X-ray source detections). The fundamental goal of this project is to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties.



rate research

Read More

317 - A. Corral 2014
The XMM-Newton spectral-fit database (XMMFITCAT) is a catalogue of spectral fitting results for the source detections within the XMM-Newton Serendipitous source catalogue with more than 50 net (background-subtracted) counts per detector in the 0.5-10 keV energy band. Its most recent version, constructed from the latest version of the XMM-Newton catalogue, the 3XMM Data Release 4 (3XMM-DR4), contains spectral-fitting results for $gtrsim$ 114,000 detections, corresponding to $simeq$ 78,000 unique sources. Three energy bands are defined and used in the construction of XMMFITCAT: Soft (0.5-2 keV), Hard (2-10 keV), and Full (0.5-10 keV) bands. Six spectral models, three simple and three more complex models, were implemented and applied to the spectral data. Simple models are applied to all sources, whereas complex models are applied to observations with more than 500 counts (30%). XMMFITCAT includes best-fit parameters and errors, fluxes, and goodness of fit estimates for all fitted models. XMMFITCAT has been conceived to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties, as well as characterise the X-ray properties of samples selected in different wavelengths. We present in this paper the main details of the construction of this database, and summarise its main characteristics.
We present the results of a 500 ksec long XMM-Newton observation and a 120 ksec long quasi-simultaneous Chandra observation of the Narrow Line Seyfert 1 galaxy 1H0707-495 performed in 2010 September. Consistent with earlier results by Fabian et al. (2009) and Zoghbi et al. (2010), the spectrum is found to be dominated by relativistically broadened reflection features from an ionised accretion disc around a maximally rotating black hole. Even though the spectra changed between this observation and earlier XMM-Newton observations, the physical parameters of the black hole and accretion disc (i.e., spin and inclination) are consistent between both observations. We show that this reflection spectrum is slightly modified by absorption in a mildly relativistic, highly ionised outflow which changed velocity from around 0.11c to 0.18c between 2008 January and 2010 September. Alternative models, in which the spectral shape is dominated by absorption, lead to spectral fits of similar quality, however, the parameters inferred for the putative absorber are unphysical.
339 - G.A. Khorunzhev 2017
We have compiled a catalog of 903 candidates for type 1 quasars at redshifts 3<z<5.5 selected among the X-ray sources of the serendipitous XMM-Newton survey presented in the 3XMM-DR4 catalog (the median X-ray flux is 5x10^{-15} erg/s/cm^2 the 0.5-2 keV energy band) and located at high Galactic latitudes >20 deg in Sloan Digital Sky Survey (SDSS) fields with a total area of about 300 deg^2. Photometric SDSS data as well infrared 2MASS and WISE data were used to select the objects. We selected the point sources from the photometric SDSS catalog with a magnitude error Delta z<0.2 and a color i-z<0.6 (to first eliminate the M-type stars). For the selected sources, we have calculated the dependences chi^2(z) for various spectral templates from the library that we compiled for these purposes using the EAZY software. Based on these data, we have rejected the objects whose spectral energy distributions are better described by the templates of stars at z=0 and obtained a sample of quasars with photometric redshift estimates 2.75<zphot<5.5. The selection completeness of known quasars at z>3 in the investigated fields is shown to be about 80%. The normalized median absolute deviation is 0.07, while the outlier fraction is eta= 9. The number of objects per unit area in our sample exceeds the number of quasars in the spectroscopic SDSS sample at the same redshifts approximately by a factor of 1.5. The subsequent spectroscopic testing of the redshifts of our selected candidates for quasars at 3<z<5.5 will allow the purity of this sample to be estimated more accurately.
Context. X-ray spectral variability analyses of active galactic nuclei (AGN) with moderate luminosities and redshifts typically show a softer when brighter behaviour. Such a trend has rarely been investigated for high-luminosity AGNs ($ L_{bol}gtrsim 10^{44}$ erg/s), nor for a wider redshift range (e.g. $0lesssim zlesssim 5$). Aims. We present an analysis of spectral variability based on a large sample of 2,700 quasars, measured at several different epochs, extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue. Methods. We quantified the spectral variability through the parameter $beta$ defined as the ratio between the change in the photon index $Gamma$ and the corresponding logarithmic flux variation, $beta=-DeltaGamma/Deltalog F_X$. Results. Our analysis confirms a softer when brighter behaviour for our sample, extending the previously found general trend to high luminosity and redshift. We estimate an ensemble value of the spectral variability parameter $beta=-0.69pm0.03$. We do not find dependence of $beta$ on redshift, X-ray luminosity, black hole mass or Eddington ratio. A subsample of radio-loud sources shows a smaller spectral variability parameter. There is also some change with the X-ray flux, with smaller $beta$ (in absolute value) for brighter sources. We also find significant correlations for a small number of individual sources, indicating more negative values for some sources.
Variations of the X-ray spectral slope have been found in many Active Galactic Nuclei (AGN) at moderate luminosities and redshifts, typically showing a softer when brighter behaviour. However, similar studies are not usually performed for high-luminosity AGNs. We present an analysis of the spectral variability based on a large sample of quasars in wide intervals of luminosity and redshift, measured at several different epochs, extracted from the fifth release of the XMM Newton Serendipitous Source Catalogue. Our analysis confirms a softer when brighter trend also for our sample, extending to high luminosity and redshift the general behaviour previously found. These results can be understood in light of current spectral models, such as intrinsic variations of the X-ray primary radiation, or superposition with a constant reflection component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا