Do you want to publish a course? Click here

Ideals of $A(G)$ and bimodules over maximal abelian selfadjoint algebras

296   0   0.0 ( 0 )
 Added by Aristides Katavolos
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

This paper is concerned with weak* closed masa-bimodules generated by A(G)-invariant subspaces of VN(G). An annihilator formula is established, which is used to characterise the weak* closed subspaces of B(L^2(G)) which are invariant under both Schur multipliers and a canonical action of M(G) on B(L^2(G)) via completely bounded maps. We study the special cases of extremal ideals with a given null set and, for a large class of groups, we establish a link between relative spectral synthesis and relative operator synthesis.



rate research

Read More

Starting with a left ideal $J$ of $L^1(G)$ we consider its annihilator $J^{perp}$ in $L^{infty}(G)$ and the generated ${rm VN}(G)$-bimodule in $mathcal{B}(L^2(G))$, ${rm Bim}(J^{perp})$. We prove that ${rm Bim}(J^{perp})=({rm Ran} J)^{perp}$ when $G$ is weakly amenable discrete, compact or abelian, where ${rm Ran} J$ is a suitable saturation of $J$ in the trace class. We define jointly harmonic functions and jointly harmonic operators and show that, for these classes of groups, the space of jointly harmonic operators is the ${rm VN}(G)$-bimodule generated by the space of jointly harmonic functions. Using this, we give a proof of the following result of Izumi and Jaworski - Neufang: the non-commutative Poisson boundary is isomorphic to the crossed product of the space of harmonic functions by $G$.
303 - Elias G. Katsoulis 2016
This paper is an expanded version of the lectures I delivered at the Indian Statistical Institute, Bangalore, during the OTOA 2014 conference.
In a recent paper on exotic crossed products, we included a lemma concerning ideals of the Fourier-Stieltjes algebra. Buss, Echterhoff, and Willett have pointed out to us that our proof of this lemma contains an error. In fact, it remains an open question whether the lemma is true as stated. In this note we indicate how to contain the resulting damage. Our investigation of the above question leads us to define two properties emph{ordered} and emph{weakly ordered} for invariant ideals of Fourier-Stieltjes algebras, and we initiate a study of these properties.
232 - Erik Bedos , Roberto Conti 2014
We consider a twisted action of a discrete group G on a unital C*-algebra A and give conditions ensuring that there is a bijective correspondence between the maximal invariant ideals of A and the maximal ideals in the associated reduced C*-crossed product.
276 - G. K. Eleftherakis 2014
We define an equivalence relation between bimodules over maximal abelian selfadjoint algebras (masa bimodules) which we call spatial Morita equivalence. We prove that two reflexive masa bimodules are spatially Morita equivalent iff their (essential) bilattices are isomorphic. We also prove that if S^1, S^2 are bilattices which correspond to reflexive masa bimodules U_1, U_2 and f: S^1rightarrow S^2 is an onto bilattice homomorphism, then: (i) If U_1 is synthetic, then U_2 is synthetic. (ii) If U_2 contains a nonzero compact (or a finite or a rank 1) operator, then U_1 also contains a nonzero compact (or a finite or a rank 1) operator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا