One-time memories (OTMs) are simple, tamper-resistant cryptographic devices, which can be used to implement sophisticated functionalities such as one-time programs. Can one construct OTMs whose security follows from some physical principle? This is not possible in a fully-classical world, or in a fully-quantum world, but there is evidence that OTMs can be built using isolated qubits -- qubits that cannot be entangled, but can be accessed using adaptive sequences of single-qubit measurements. Here we present new constructions for OTMs using isolated qubits, which improve on previous work in several respects: they achieve a stronger single-shot security guarantee, which is stated in terms of the (smoothed) min-entropy; they are proven secure against adversaries who can perform arbitrary local operations and classical communication (LOCC); and they are efficiently implementable. These results use Wiesners idea of conjugate coding, combined with error-correcting codes that approach the capacity of the q-ary symmetric channel, and a high-order entropic uncertainty relation, which was originally developed for cryptography in the bounded quantum storage model.