Do you want to publish a course? Click here

The MUSIC of Galaxy Clusters II: X-ray global properties and scaling relations

119   0   0.0 ( 0 )
 Added by Veronica Biffi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) dataset. We focus on a sub-sample of 179 clusters at redshift z~0.11, with 3.2e14M_sun/h<M_vir<2e15Msun/h, complete in mass. We employed the X-ray photon simulator PHOX to obtain synthetic Chandra Observations and derive observable-like global properties of the intracluster medium (ICM), as X-ray temperature (T_X) and luminosity (L_X). T_X is found to slightly under-estimate the true mass-weighted temperature, although tracing fairly well the cluster total mass. We also study the effects of T_X on scaling relations with cluster intrinsic properties: total (M_500) and gas (M_g500) mass; integrated Compton parameter (Y_SZ) of the Sunyaev-Zeldovich (SZ) thermal effect; Y_X=M_g500 T_X. We confirm that Y_X is a very good mass proxy, with a scatter on M_500-Y_X and Y_SZ-Y_X lower than 5%. The study of scaling relations among X-ray, intrinsic and SZ properties indicates that MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving T_X. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting T_X and, particularly, L_X.



rate research

Read More

185 - Adam Mantz 2009
(Abridged) This is the second in a series of papers in which we derive simultaneous constraints on cosmology and X-ray scaling relations using observations of massive, X-ray flux-selected galaxy clusters. The data set consists of 238 clusters drawn from the ROSAT All-Sky Survey with 0.1-2.4 keV luminosities >2.5e44 erg/second, and incorporates extensive follow-up observations using the Chandra X-ray Observatory. Our analysis accounts self-consistently for all selection effects, covariances and systematic uncertainties. Here we describe the reduction of the follow-up X-ray observations, present results on the cluster scaling relations, and discuss their implications. Our constraints on the luminosity-mass and temperature-mass relations, measured within r_500, lead to three important results. First, the data support the conclusion that excess heating of the intracluster medium has altered its thermodynamic state from that expected in a simple, gravitationally dominated system; however, this excess heating is primarily limited to the central regions of clusters (r<0.15r_500). Second, the intrinsic scatter in the center-excised luminosity-mass relation is remarkably small, being undetected at the <10% level in current data; for the hot, massive clusters under investigation, this scatter is smaller than in either the temperature-mass or Y_X-mass relations (10-15%). Third, the evolution with redshift of the scaling relations is consistent with the predictions of simple, self-similar models of gravitational collapse, indicating that the mechanism responsible for heating the central regions of clusters was in operation before redshift 0.5 (the limit of our data) and that its effects on global cluster properties have not evolved strongly since then.
We introduce the Marenostrum-MultiDark SImulations of galaxy Clusters (MUSIC) Dataset, one of the largest sample of hydrodynamically simulated galaxy clusters with more than 500 clusters and 2000 groups. The objects have been selected from two large N-body simulations and have been resimulated at high resolution using SPH together with relevant physical processes (cooling, UV photoionization, star formation and different feedback processes). We focus on the analysis of the baryon content (gas and star) of clusters in the MUSIC dataset both as a function of aperture radius and redshift. The results from our simulations are compared with the most recent observational estimates of the gas fraction in galaxy clusters at different overdensity radii. When the effects of cooling and stellar feedbacks are included, the MUSIC clusters show a good agreement with the most recent observed gas fractions quoted in the literature. A clear dependence of the gas fractions with the total cluster mass is also evident. The impact of the aperture radius choice, when comparing integrated quantities at different redshifts, is tested: the standard definition of radius at a fixed overdensity with respect to critical density is compared with a definition based on the redshift dependent overdensity with respect to background density. We also present a detailed analysis of the scaling relations of the thermal SZ (Sunyaev Zeldovich) Effect derived from MUSIC clusters. The integrated SZ brightness, Y, is related to the cluster total mass, M, as well as, the M-Y counterpart, more suitable for observational applications. Both laws are consistent with predictions from the self-similar model, showing a very low scatter. The effects of the gas fraction on the Y-M scaling and the presence of a possible redshift dependence on the Y-M scaling relation are also explored.
127 - S. Giodini 2013
Well-calibrated scaling relations between the observable properties and the total masses of clusters of galaxies are important for understanding the physical processes that give rise to these relations. They are also a critical ingredient for studies that aim to constrain cosmological parameters using galaxy clusters. For this reason much effort has been spent during the last decade to better understand and interpret relations of the properties of the intra-cluster medium. Improved X-ray data have expanded the mass range down to galaxy groups, whereas SZ surveys have openened a new observational window on the intracluster medium. In addition,continued progress in the performance of cosmological simulations has allowed a better understanding of the physical processes and selection effects affecting the observed scaling relations. Here we review the recent literature on various scaling relations, focussing on the latest observational measurements and the progress in our understanding of the deviations from self similarity.
We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and $Y_{X}$. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with $M_{500} > 10^{14} M_{odot} E(z)^{-1}$, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at $z sim 2$. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at $z=2$ are 10 per cent lower with respect to $z=0$ due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range $z=0-1$, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and $Y_X$ is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.
145 - C. J. Short 2010
We use numerical simulations to investigate, for the first time, the joint effect of feedback from supernovae (SNe) and active galactic nuclei (AGN) on the evolution of galaxy cluster X-ray scaling relations. Our simulations are drawn from the Millennium Gas Project and are some of the largest hydrodynamical N-body simulations ever carried out. Feedback is implemented using a hybrid scheme, where the energy input into intracluster gas by SNe and AGN is taken from a semi-analytic model of galaxy formation. This ensures that the source of feedback is a population of galaxies that closely resembles that found in the real universe. We show that our feedback model is capable of reproducing observed local X-ray scaling laws, at least for non-cool core clusters, but that almost identical results can be obtained with a simplistic preheating model. However, we demonstrate that the two models predict opposing evolutionary behaviour. We have examined whether the evolution predicted by our feedback model is compatible with observations of high-redshift clusters. Broadly speaking, we find that the data seems to favour the feedback model for z<0.5, and the preheating model at higher redshift. However, a statistically meaningful comparison with observations is impossible, because the large samples of high-redshift clusters currently available are prone to strong selection biases. As the observational picture becomes clearer in the near future, it should be possible to place tight constraints on the evolution of the scaling laws, providing us with an invaluable probe of the physical processes operating in galaxy clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا