Dispersive magnetic resonance mode in the Kondo semiconductor CeFe2Al10


Abstract in English

The CeT2Al10 family of orthorhombic compounds exhibits a very peculiar evolution from a Kondo-insulator (T: Fe) to an unconventional long-range magnetic order (T: Ru, Os). Inelastic neutron scattering experiments performed on single-crystal CeFe2Al10 reveal that this material develops a spin-gap in its magnetic spectral response below ~ 50 K, with a magnetic excitation dispersing from $E = 10.2 pm 0.5$ meV at the Y zone-boundary point [q = (0,1,0)] to $approx 12$ meV at the top of the branch. The excitation shows a pronounced polarization of the magnetic fluctuations along a, the easy anisotropy axis. Its behavior is contrasted with that of the (magnonlike) modes previously reported for CeRu2Al10, which have transverse character and exist only in the antiferromagnetic state. The present observation is ascribed to a magnetic exciton mechanism invoked to explain a similar magnetic response previously discovered in YbB12.

Download