Do you want to publish a course? Click here

On the relation between metallicity and RGB color in HST/ACS data

164   0   0.0 ( 0 )
 Added by David Streich
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The determination of stellar metallicity and its gradient in external galaxies is a difficult task, but crucial for the understanding of galaxy formation and evolution. The color of the Red Giant Branch (RGB) can be used to determine metallicities of stellar populations that have only shallow photometry. We will quantify the relation between metallicity and color in the widely used HST ACS filters F606W and F814W. We use a sample of globular clusters from the ACS Globular Cluster Survey and measure their RGB color at given absolute magnitudes to derive the color-metallicity relation. We especially investigate the scatter and the uncertainties in this relation and show its limitations. There is a clear relation between metallicity and RGB color. A comparison with isochrones shows reasonably good agreement with BaSTI models, a small offset to Dartmouth models, and a larger offset to Padua models. Even for the best globular cluster data available, the metallicity of a simple stellar population can be determined from the RGB alone only with an accuracy of 0.3dex for [M/H]< -1, and 0.15dex for [M/H]> -1. For mixed populations, as they are observed in external galaxies, the uncertainties will be even larger due to uncertainties in extinction, age, etc. Therefore caution is necessary when interpreting photometric metallicities.



rate research

Read More

The early evolution of a dense young star cluster (YSC) depends on the intricate connection between stellar evolution and dynamical processes. Thus, N-body simulations of YSCs must account for both aspects. We discuss N-body simulations of YSCs with three different metallicities (Z=0.01, 0.1 and 1 Zsun), including metallicity-dependent stellar evolution recipes and metallicity-dependent prescriptions for stellar winds and remnant formation. We show that mass-loss by stellar winds influences the reversal of core collapse. In particular, the post-collapse expansion of the core is faster in metal-rich YSCs than in metal-poor YSCs, because the former lose more mass (through stellar winds) than the latter. As a consequence, the half-mass radius expands more in metal-poor YSCs. We also discuss how these findings depend on the total mass and on the virial radius of the YSC. These results give us a clue to understand the early evolution of YSCs with different metallicity.
The Complete Calibration of the Color-Redshift Relation (C3R2) survey is a multi-institution, multi-instrument survey that aims to map the empirical relation of galaxy color to redshift to i~24.5 (AB), thereby providing a firm foundation for weak lensing cosmology with the Stage IV dark energy missions Euclid and WFIRST. Here we present 3171 new spectroscopic redshifts obtained in the 2016B and 2017A semesters with a combination of DEIMOS, LRIS, and MOSFIRE on the Keck telescopes. The observations come from all of the Keck partners: Caltech, NASA, the University of Hawaii, and the University of California. Combined with the 1283 redshifts published in DR1, the C3R2 survey has now obtained and published 4454 high quality galaxy redshifts. We discuss updates to the survey design and provide a catalog of photometric and spectroscopic data. Initial tests of the calibration method performance are given, indicating that the sample, once completed and combined with extensive data collected by other spectroscopic surveys, should allow us to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for WFIRST. We use the full spectroscopic sample to demonstrate that galaxy brightness is weakly correlated with redshift once a galaxy is localized in the Euclid or WFIRST color space, with potentially important implications for the spectroscopy needed to calibrate redshifts for faint WFIRST and LSST sources.
In addition to the well-known gas phase mass-metallicity relation (MZR), recent spatially-resolved observations have shown that local galaxies also obey a mass-metallicity gradient relation (MZGR) whereby metallicity gradients can vary systematically with galaxy mass. In this work, we use our recently-developed analytic model for metallicity distributions in galactic discs, which includes a wide range of physical processes -- radial advection, metal diffusion, cosmological accretion, and metal-enriched outflows -- to simultaneously analyse the MZR and MZGR. We show that the same physical principles govern the shape of both: centrally-peaked metal production favours steeper gradients, and this steepening is diluted by the addition of metal-poor gas, which is supplied by inward advection for low-mass galaxies and by cosmological accretion for massive galaxies. The MZR and the MZGR both bend at galaxy stellar mass $sim 10^{10} - 10^{10.5},rm{M_{odot}}$, and we show that this feature corresponds to the transition of galaxies from the advection-dominated to the accretion-dominated regime. We also find that both the MZR and MZGR strongly suggest that low-mass galaxies preferentially lose metals entrained in their galactic winds. While this metal-enrichment of the galactic outflows is crucial for reproducing both the MZR and the MZGR at the low-mass end, we show that the flattening of gradients in massive galaxies is expected regardless of the nature of their winds.
134 - J. Price , S. Phillipps , A. Huxor 2009
The HST ACS Coma Cluster Treasury Survey is a deep two passband imaging survey of the nearest very rich cluster of galaxies, covering a range of galaxy density environments. The imaging is complemented by a recent wide field redshift survey of the cluster conducted with Hectospec on the 6.5m MMT. Among the many scientific applications for this data are the search for compact galaxies. In this paper, we present the discovery of seven compact (but quite luminous) stellar systems, ranging from M32-like galaxies down to ultra-compact dwarfs (UCDs)/dwarf to globular transition objects (DGTOs). We find that all seven compact galaxies require a two-component fit to their light profile and have measured velocity dispersions that exceed those expected for typical early-type galaxies at their luminosity. From our structural parameter analysis we conclude that three of the sample should be classified as compact ellipticals or M32-like galaxies, the remaining four being less extreme systems. The three compact ellipticals are all found to have old luminosity weighted ages (> 12 Gyr), intermediate metallicities (-0.6 < [Fe/H] < -0.1) and high [Mg/Fe] (> 0.25). Our findings support a tidal stripping scenario as the formation mode of compact galaxies covering the luminosity range studied here. We speculate that at least two early-type morphologies may serve as the progenitor of compact galaxies in clusters.
The Interstellar Medium (ISM) comprises gases at different temperatures and densities, including ionized, atomic, molecular species, and dust particles. The neutral ISM is dominated by neutral hydrogen and has ionization fractions up to 8%. The concentration of chemical elements heavier than helium (metallicity) spans orders of magnitudes in Galactic stars, because they formed at different times. Instead, the gas in the Solar vicinity is assumed to be well mixed and have Solar metallicity in traditional chemical evolution models. The ISM chemical abundances can be accurately measured with UV absorption-line spectroscopy. However, the effects of dust depletion, which removes part of the metals from the observable gaseous phase and incorporates it into solid grains, have prevented, until recently, a deeper investigation of the ISM metallicity. Here we report the dust-corrected metallicity of the neutral ISM measured towards 25 stars in our Galaxy. We find large variations in metallicity over a factor of 10 (with an average 55 +/- 7% Solar and standard deviation 0.28 dex) and including many regions of low metallicity, down to ~17% Solar and possibly below. Pristine gas falling onto the disk in the form of high-velocity clouds can cause the observed chemical inhomogeneities on scales of tens of pc. Our results suggest that this low-metallicity accreting gas does not efficiently mix into the ISM, which may help us understand metallicity deviations in nearby coeval stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا