Raman-gain induced loss-compensation in whispering-gallery-microresonators and single-nanoparticle detection with whispering-gallery Raman-microlasers


Abstract in English

Recently optical whispering-gallery-mode resonators (WGMRs) have emerged as promising platforms to achieve label-free detection of nanoscale objects and to reach single molecule sensitivity. The ultimate detection performance of WGMRs are limited by energy dissipation in the material they are fabricated from. Up to date, to improve detection limit, either rare-earth ions are doped into the WGMR to compensate losses or plasmonic resonances are exploited for their superior field confinement. Here, we demonstrate, for the first time, enhanced detection of single-nanoparticle induced mode-splitting in a silica WGMR via Raman-gain assisted loss-compensation and WGM Raman lasing. Notably, we detected and counted individual dielectric nanoparticles down to a record low radius of 10 nm by monitoring a beatnote signal generated when split Raman lasing lines are heterodyne-mixed at a photodetector. This dopant-free scheme retains the inherited biocompatibility of silica, and could find widespread use for sensing in biological media. It also opens the possibility of using intrinsic Raman or parametric gain in other systems, where dissipation hinders the progress of the field and limits applications.

Download