No Arabic abstract
In this paper, we propose an experiment for the precise measurements of very forward particle production at RHIC. The proposal is to install a LHCf-like calorimeter in the ZDC installation slot at one of the RHIC interaction points. By installing a high-resolution electromagnetic calorimeter at this location we measure the spectra of photons, neutrons and pi0 at pseudo rapidity eta above 6. The new measurements at 500 GeV p-p collisions contribute to improve the hadronic interaction models used in the cosmic-ray air shower simulations. Using a similar kinematic coverage at RHIC to that of the measurements at LHC, we can test the Feynman scaling with a wide energy range and make the extrapolation of models into cosmic-ray energy more reliable. Combination of a high position resolution of the LHCf detector and a high energy resolution of the ZDC makes it possible to determine pT of forward neutrons with the ever best resolution. This enables us to study the forward neutron spin asymmetry discovered at RHIC in more detail. Another new experiment expected at RHIC is world-first light-ion collisions. Cosmic-ray interaction models have been so far tested with accelerator data, but colliders have provided only p-p and heavy-ion collisions. To simulate the interaction between cosmic-ray particles and atmosphere, collision of light ions like nitrogen is a ultimate goal for the cosmic-ray physics. We propose 200 GeV p-N collisions together with 200 GeV p-p collisions to study the nuclear effects in the forward particle production. The experiment can be performed by using the existing LHCf detector. Considering the geometry and response of one of the LHCf detectors, we propose some short dedicated operations. Ideal beam conditions are summarized in this paper. Our basic idea is to bring one of the LHCf detectors to RHIC and then operate from 2016 season at RHIC.
We propose a new experiment Relativistic Heavy Ion Collider forward (RHICf) for the precise measurements of very forward particle production at RHIC. The proposal is to install the LHCf Arm2 detector in the North side of the ZDC installation slot at the PHENIX interaction point. By installing high-resolution electromagnetic calorimeters at this location we can measure the spectra of photons, neutrons and pi0 at pseudorapidity eta>6.
FASER is a proposed small and inexpensive experiment designed to search for light, weakly-interacting particles at the LHC. Such particles are dominantly produced along the beam collision axis and may be long-lived, traveling hundreds of meters before decaying. To exploit both of these properties, FASER is to be located along the beam collision axis, 480 m downstream from the ATLAS interaction point, in the unused service tunnel TI18. We propose that FASER be installed in TI18 in Long Shutdown 2 in time to collect data from 2021-23 during Run 3 of the 14 TeV LHC. FASER will detect new particles that decay within a cylindrical volume with radius R= 10 cm and length L = 1.5 m. With these small dimensions, FASER will complement the LHCs existing physics program, extending its discovery potential to a host of new particles, including dark photons, axion-like particles, and other CP-odd scalars. A FLUKA simulation and analytical estimates have confirmed that numerous potential backgrounds are highly suppressed at the FASER location, and the first in situ measurements are currently underway. We describe FASERs location and discovery potential, its target signals and backgrounds, the detectors layout and components, and the experiments preliminary cost estimate, funding, and timeline.
In this LOI we propose a dedicated experiment that would detect milli-charged particles produced by pp collisions at LHC Point 5. The experiment would be installed during LS2 in the vestigial drainage gallery above UXC and would not interfere with CMS operations. With 300 fb$^{-1}$ of integrated luminosity, sensitivity to a particle with charge $mathcal{O}(10^{-3})~e$ can be achieved for masses of $mathcal{O}(1)$ GeV, and charge $mathcal{O}(10^{-2})~e$ for masses of $mathcal{O}(10)$ GeV, greatly extending the parameter space explored for particles with small charge and masses above 100 MeV.
This Letter of Intent describes LUXE (Laser Und XFEL Experiment), an experiment that aims to use the high-quality and high-energy electron beam of the European XFEL and a powerful laser. The scientific objective of the experiment is to study quantum electrodynamics processes in the regime of strong fields. High-energy electrons, accelerated by the European XFEL linear accelerator, and high-energy photons, produced via Bremsstrahlung of those beam electrons, colliding with a laser beam shall experience an electric field up to three times larger than the Schwinger critical field (the field at which the vacuum itself is expected to become unstable and spark with spontaneous creation of electron-positron pairs) and access a new regime of quantum physics. The processes to be investigated, which include nonlinear Compton scattering and nonlinear Breit-Wheeler pair production, are relevant to a variety of phenomena in Nature, e.g. in the areas of astrophysics and collider physics and complement recent results in atomic physics. The setup requires in particular the extraction of a minute fraction of the electron bunches from the European XFEL accelerator, the installation of a powerful laser with sophisticated diagnostics, and an array of precision detectors optimised to measure electrons, positrons and photons. Physics sensitivity projections based on simulations are also provided.
In the RADAR project described in this Letter of Intent, we propose to deploy a 6 kton liquid argon TPC at the NOvA Far Detector building in Ash River, Minnesota, and expose it to the NuMI beam during NOvA running. It will significantly add to the physics capabilities of the NOvA program while providing LBNE with an R&D program based on full-scale TPC module assemblies. RADAR offers an excellent opportunity to improve the full Homestake LBNE project in physics reach, timeline, costs, and fostering international partnership. The anticipated duration of the projects construction is 5 years, with running happening between 2018 and 2023.